Geometric measures of convex sets and bounds on problem sensitivity and robustness for conic linear optimization
The effect of data perturbation and uncertainty has always been an important consideration in Optimization. It is important to know whether a given problem is very sensible to perturbations on the data or, on the contrary, is more “robust”. Problem geometry does have an impact on the sensitivity of...
Uložené v:
| Vydané v: | Mathematical programming Ročník 147; číslo 1-2; s. 47 - 79 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2014
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!