Evaluating and minimizing batch effects in metabolomics

Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mass spectrometry reviews Jg. 41; H. 3; S. 421 - 442
Hauptverfasser: Han, Wei, Li, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.05.2022
Schlagworte:
ISSN:0277-7037, 1098-2787, 1098-2787
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh‐resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype‐related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.
AbstractList Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh-resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype-related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.
Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh-resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype-related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in analytical tools such as ultrahigh-resolution chromatography and mass spectrometry, an increasing number of metabolites can now be profiled with high quantification accuracy. The increased detectability and accuracy raise the level of stringiness required to reduce or control any experimental artifacts that can interfere with the measurement of phenotype-related metabolome changes. One of the artifacts is the batch effect that can be caused by multiple sources. In this review, we discuss the origins of batch effects, approaches to detect interbatch variations, and methods to correct unwanted data variability due to batch effects. We recognize that minimizing batch effects is currently an active research area, yet a very challenging task from both experimental and data processing perspectives. Thus, we try to be critical in describing the performance of a reported method with the hope of stimulating further studies for improving existing methods or developing new methods.
Author Han, Wei
Li, Liang
Author_xml – sequence: 1
  givenname: Wei
  surname: Han
  fullname: Han, Wei
  organization: University of Alberta
– sequence: 2
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: liang.li@ualberta.ca
  organization: University of Alberta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33238061$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LwzAYwPEgE_eiB7-AFLzooVte2qQ9DpkvMPGgnsPTJNWMNplNq-int3PTg6Cn8MDveQj_MRo47wxCxwRPCcZ0VkOYUsIF3UMjgvMspiITAzTCVIhYYCaGaBzCCmNCUkIO0JAxyjLMyQiJxStUHbTWPUXgdFRbZ2v7sRkLaNVzZMrSqDZE1kW1aaHwla-tCodov4QqmKPdO0GPl4uHi-t4eXd1czFfxiohOY2BaFykDIBTY7TCwmgoclGSTCumM0VTpUBlmlGTFJDmecI1S6GgosyKnCVsgs62d9eNf-lMaGVtgzJVBc74Lkia8IRjwTDp6ekvuvJd4_rfScoTwUma84062amuqI2W68bW0LzL7yQ9ON8C1fgQGlP-EILlJrfsc8uv3L2d_bLKtn1M79oGbPXfxputzPvfp-Xt_H678QmdT4-L
CitedBy_id crossref_primary_10_1016_j_ebiom_2023_104553
crossref_primary_10_1016_j_talanta_2024_126109
crossref_primary_10_1038_s41467_025_62237_4
crossref_primary_10_1016_j_csbj_2025_03_030
crossref_primary_10_1186_s40168_022_01450_5
crossref_primary_10_1016_j_drudis_2023_103661
crossref_primary_10_1016_j_foodchem_2024_138525
crossref_primary_10_1016_j_envres_2025_122737
crossref_primary_10_1002_etc_5776
crossref_primary_10_3390_metabo15080514
crossref_primary_10_1007_s11306_021_01796_1
crossref_primary_10_1016_j_tifs_2025_104878
crossref_primary_10_3390_nu15163576
crossref_primary_10_1038_s41467_025_62616_x
crossref_primary_10_1016_j_tifs_2024_104558
crossref_primary_10_3389_fcvm_2025_1568528
crossref_primary_10_1039_D3FO01982A
crossref_primary_10_1002_mnfr_202400112
crossref_primary_10_1002_mrc_5350
crossref_primary_10_1186_s13059_024_03401_9
crossref_primary_10_1007_s00192_025_06069_2
crossref_primary_10_1186_s13059_023_03047_z
crossref_primary_10_3390_metabo14110633
crossref_primary_10_3390_jcm10091826
crossref_primary_10_1007_s00216_023_04511_2
crossref_primary_10_3389_fmolb_2022_930204
crossref_primary_10_3389_fonc_2021_789248
crossref_primary_10_3390_foods14152655
crossref_primary_10_1038_s41598_024_67459_y
crossref_primary_10_3390_metabo15070434
crossref_primary_10_1007_s00394_024_03511_x
crossref_primary_10_1016_j_kint_2023_11_007
crossref_primary_10_1038_s41467_024_48177_5
crossref_primary_10_3390_metabo12060519
crossref_primary_10_3390_biom15040477
crossref_primary_10_1093_ije_dyac062
crossref_primary_10_1016_j_trac_2023_117225
crossref_primary_10_1038_s41598_021_84824_3
crossref_primary_10_1093_clinchem_hvae141
crossref_primary_10_1016_j_trac_2023_117009
crossref_primary_10_1038_s41593_023_01361_0
crossref_primary_10_3390_metabo14010077
crossref_primary_10_3389_frai_2023_1098308
crossref_primary_10_1021_jasms_4c00467
crossref_primary_10_1021_jasms_5c00073
Cites_doi 10.1021/ac0352427
10.1093/nar/gks1004
10.1021/ac101216e
10.1039/b604498k
10.1016/j.chroma.2017.09.023
10.1007/s11306-015-0826-3
10.1002/elps.201400600
10.1039/C1AN15605E
10.1016/j.copbio.2016.08.001
10.1007/BF02289588
10.1002/jssc.200900152
10.1093/nar/gkx449
10.1007/s10337-013-2429-3
10.1093/biostatistics/kxv027
10.1016/j.aca.2018.04.055
10.1016/j.aca.2018.08.002
10.1111/j.1478-3231.2012.02781.x
10.1007/s11306-014-0707-1
10.1007/s11306-016-1015-8
10.1021/acs.analchem.5b03912
10.1016/j.talanta.2014.07.031
10.1021/ac302877x
10.1038/sj.ki.5000273
10.1016/j.jpba.2010.04.025
10.1093/bioinformatics/btx196
10.1021/ac3025625
10.1039/C5AN01638J
10.1021/ac302748b
10.1093/jnci/dji054
10.1016/j.chroma.2012.01.076
10.1093/bioinformatics/btt480
10.1016/j.chroma.2010.09.055
10.1161/CIRCGENETICS.114.000216
10.1021/acs.analchem.9b05460
10.1371/journal.pone.0179530
10.1093/bioinformatics/btu423
10.1021/ac5011684
10.1021/acs.analchem.0c01610
10.1016/j.copbio.2014.08.006
10.1038/nprot.2011.454
10.1016/j.aca.2019.02.010
10.1016/j.trac.2009.12.003
10.1016/j.jchromb.2008.04.044
10.1371/journal.pone.0138965
10.1007/s11306-012-0482-9
10.1086/626134
10.1002/(SICI)1097-0231(19990815)13:15<1580::AID-RCM679>3.0.CO;2-V
10.1016/j.jprot.2012.05.005
10.1038/srep39921
10.1016/j.jchromb.2008.04.031
10.1007/s11306-016-1026-5
10.3390/metabo2040775
10.1007/s11306-016-1124-4
10.1371/journal.pone.0116221
10.1186/1471-2105-8-93
10.1016/j.aca.2015.07.008
10.1021/ac901143w
10.1007/978-1-4939-9744-2_16
10.1021/acs.analchem.7b02240
10.1039/C1MB05350G
10.1007/s11306-006-0042-2
10.1021/ac201065j
10.1016/j.aca.2013.01.015
10.1038/nprot.2011.335
10.1007/s11306-016-1030-9
10.1677/erc.1.00868
10.1021/acs.analchem.5b04491
10.1016/j.jpba.2016.07.008
10.1093/bioinformatics/bth270
10.1016/j.trac.2008.01.008
10.1007/s00216-013-6856-7
10.1021/ac070212f
10.1016/j.chemolab.2011.08.009
10.1093/nar/gkaa258
10.1016/j.drudis.2006.10.004
10.1093/nar/gkv1042
10.1186/1471-2105-12-337
10.1038/nrn3475
10.1016/j.ab.2004.09.001
10.1002/rcm.1790
10.1016/j.ab.2007.07.022
10.1016/j.tibtech.2017.02.012
10.1016/j.chroma.2015.02.025
10.1007/s11306-014-0712-4
10.1016/j.aca.2018.02.053
10.1016/j.ymgme.2015.04.008
10.15252/emmm.201606798
10.1021/ac051972y
10.1093/bioinformatics/btg385
10.1038/nbt.4091
10.1038/nrd.2016.32
10.1021/ac502439y
10.1016/j.chroma.2015.12.007
10.1007/s00216-014-7797-5
10.1021/ac051495j
10.1089/omi.2013.0010
10.1038/nrg2825
10.1021/acs.analchem.7b04400
10.1093/biostatistics/kxj037
10.1016/j.ab.2015.01.003
10.1016/j.jchromb.2008.04.049
10.1186/s12859-017-1501-7
10.3390/metabo9110247
10.1021/ac900166a
10.1016/j.talanta.2018.11.019
10.1007/s00216-019-02073-w
10.1021/acs.analchem.8b05592
10.1093/bioinformatics/btp426
10.3390/metabo10020051
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
2022 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
– notice: 2022 Wiley Periodicals LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/mas.21672
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1098-2787
EndPage 442
ExternalDocumentID 33238061
10_1002_mas_21672
MAS21672
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343
IEDL.DBID DRFUL
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-7037
1098-2787
IngestDate Thu Jul 10 17:46:52 EDT 2025
Sat Nov 29 14:45:55 EST 2025
Mon Jul 21 06:00:21 EDT 2025
Sat Nov 29 07:03:27 EST 2025
Tue Nov 18 19:47:20 EST 2025
Wed Jan 22 16:26:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords batch effect
mass spectrometry
NMR
metabolome analysis
metabolomics
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4192-a1d0b53aa62eedc07edab97f18dc3d8c25ccac8d32e4ba59946d35ab27f8b9343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 33238061
PQID 2647615961
PQPubID 1016389
PageCount 22
ParticipantIDs proquest_miscellaneous_2464607301
proquest_journals_2647615961
pubmed_primary_33238061
crossref_primary_10_1002_mas_21672
crossref_citationtrail_10_1002_mas_21672
wiley_primary_10_1002_mas_21672_MAS21672
PublicationCentury 2000
PublicationDate May/June 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May/June 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Mass spectrometry reviews
PublicationTitleAlternate Mass Spectrom Rev
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2010; 11
2019; 91
2004; 20
2013; 1
2009; 81
2013; 768
2013; 405
2005; 336
2017; 89
2010; 1217
2020; 10
2014; 130
2007; 79
2013; 9
2012; 1255
2014; 406
2010; 29
2020; 92
2015; 88
2008; 27
2015; 87
2007; 8
2020b
2007; 3
2008; 871
2012; 137
2018; 36
2019; 9
2017; 1523
2011; 83
2019; 1061
2015; 887
2016; 17
2011; 6
2018; 1019
2016; 15
2012; 32
2016; 12
2005; 19
2015; 115
1967; 32
2013; 76
2020a; 92
2015; 475
2018; 90
2005; 97
2016; 1430
2014; 30
2016; 8
2012; 41
2013; 29
2017; 7
2015; 36
2010; 53
2018; 1036
2006; 78
2015; 31
2017; 43
2017; 45
2006; 131
2011; 12
2004; 76
2013; 14
2013; 17
2018; 1026
2007; 370
2017; 33
2017; 35
2015; 44
2006; 69
1999; 13
2015; 1389
2020; 48
2019; 195
2014; 9
2016; 88
2009; 25
2006; 11
1954; 62
2015; 11
2015; 10
2015; 8
2012; 75
2010; 82
2014; 86
2004; 11
2011; 109
2012; 2
2009; 32
2020
2017; 12
2019; 411
2017; 18
2012; 7
2016; 130
2012; 85
2012; 8
2012; 84
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_59_1
Worley B (e_1_2_11_100_1) 2013; 1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_2_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
Chen D (e_1_2_11_18_1) 2020
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_37_1
e_1_2_11_112_1
References_xml – volume: 336
  start-page: 164
  year: 2005
  end-page: 171
  article-title: Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly C‐labeled cell extracts as internal standards
  publication-title: Analytical Biochemistry
– volume: 17
  start-page: 29
  year: 2016
  end-page: 39
  article-title: Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses
  publication-title: Biostatistics
– volume: 62
  start-page: 74
  year: 1954
  end-page: 91
  article-title: Operator variation in experimental research
  publication-title: The Journal of Geology
– volume: 12
  start-page: 173
  year: 2016
  article-title: Large‐scale untargeted LC‐MS metabolomics data correction using between‐batch feature alignment and cluster‐based within‐batch signal intensity drift correction
  publication-title: Metabolomics
– volume: 85
  start-page: 1037
  year: 2012
  end-page: 1046
  article-title: Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time‐of‐flight mass spectrometry‐based metabolomics data and comparison with current calibration methods
  publication-title: Analytical Chemistry
– volume: 11
  start-page: 1085
  year: 2006
  end-page: 1092
  article-title: Systems biology, metabolic modelling and metabolomics in drug discovery and development
  publication-title: Drug Discovery Today
– volume: 130
  start-page: 442
  year: 2014
  end-page: 448
  article-title: Detection of batch effects in liquid chromatography‐mass spectrometry metabolomic data using guided principal component analysis
  publication-title: Talanta
– volume: 17
  start-page: 473
  year: 2013
  end-page: 485
  article-title: Evaluation of normalization methods to pave the way towards large‐scale LC‐MS‐based metabolomics profiling experiments
  publication-title: Omics: A Journal of Integrative Biology
– volume: 140
  start-page: 7810
  year: 2015
  end-page: 7817
  article-title: Intra‐batch effect correction in liquid chromatography‐mass spectrometry using quality control samples and support vector regression (QC‐SVRC)
  publication-title: Analyst
– volume: 30
  start-page: 2899
  year: 2014
  end-page: 2905
  article-title: Intensity drift removal in LC/MS metabolomics by common variance compensation
  publication-title: Bioinformatics
– volume: 1
  start-page: 92
  year: 2013
  end-page: 107
  article-title: Multivariate analysis in metabolomics
  publication-title: Current Metabolomics
– volume: 12
  start-page: 88
  year: 2016
  article-title: Improved batch correction in untargeted MS‐based metabolomics
  publication-title: Metabolomics
– volume: 83
  start-page: 5864
  year: 2011
  end-page: 5872
  article-title: Optimized preprocessing of ultra‐performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery
  publication-title: Analytical Chemistry
– volume: 18
  start-page: 84
  year: 2017
  article-title: Mixture model normalization for non‐targeted gas chromatography/mass spectrometry metabolomics data
  publication-title: BMC Bioinformatics
– volume: 1217
  start-page: 7401
  year: 2010
  end-page: 7410
  article-title: Streamlined pentafluorophenylpropyl column liquid chromatography–tandem quadrupole mass spectrometry and global C‐labeled internal standards improve performance for quantitative metabolomics in bacteria
  publication-title: Journal of Chromatography A
– volume: 11
  start-page: 518
  year: 2015
  end-page: 528
  article-title: Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample
  publication-title: Metabolomics
– volume: 33
  start-page: 2539
  year: 2017
  end-page: 2546
  article-title: Removal of batch effects using distribution‐matching residual networks
  publication-title: Bioinformatics
– volume: 79
  start-page: 5204
  year: 2007
  end-page: 5211
  article-title: Experimental and analytical variation in human urine in 1H NMR spectroscopy‐based metabolic phenotyping studies
  publication-title: Analytical Chemistry
– volume: 7
  year: 2017
  article-title: Batch effects and the effective design of single‐cell gene expression studies
  publication-title: Scientific Reports
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– year: 2020b
  article-title: High tolerance to instrument drifts by differential chemical isotope labeling LC‐MS: A case study of the effect of LC leak in long‐term sample runs on quantitative metabolome analysis
  publication-title: Journal of Mass Spectrometry
– volume: 78
  start-page: 4307
  year: 2006
  end-page: 4318
  article-title: Impact of analytical bias in metabonomic studies of human blood serum and plasma
  publication-title: Analytical Chemistry
– volume: 88
  start-page: 524
  year: 2015
  end-page: 545
  article-title: Toward merging untargeted and targeted methods in mass spectrometry‐based metabolomics and lipidomics
  publication-title: Analytical chemistry
– volume: 12
  start-page: 337
  year: 2011
  article-title: IQMNMR: open source software using time‐domain NMR data for automated identification and quantification of metabolites in batches
  publication-title: BMC Bioinformatics
– volume: 45
  start-page: W162
  year: 2017
  end-page: W170
  article-title: NOREVA: normalization and evaluation of MS‐based metabolomics data
  publication-title: Nucleic Acids Research
– volume: 1389
  start-page: 112
  year: 2015
  end-page: 119
  article-title: Isotopologue ratio normalization for non‐targeted metabolomics
  publication-title: Journal of Chromatography A
– volume: 871
  start-page: 191
  year: 2008
  end-page: 201
  article-title: Standardizing GC–MS metabolomics
  publication-title: Journal of Chromatography B
– volume: 9
  start-page: 280
  year: 2013
  end-page: 299
  article-title: Translational biomarker discovery in clinical metabolomics: an introductory tutorial
  publication-title: Metabolomics
– volume: 90
  start-page: 1363
  year: 2018
  end-page: 1369
  article-title: Best‐matched internal standard normalization in liquid chromatography–mass spectrometry metabolomics applied to environmental samples
  publication-title: Analytical Chemistry
– volume: 12
  start-page: 93
  year: 2016
  article-title: Non‐targeted UHPLC‐MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling
  publication-title: Metabolomics
– volume: 76
  start-page: 1738
  year: 2004
  end-page: 1745
  article-title: A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS
  publication-title: Analytical Chemistry
– volume: 1523
  start-page: 265
  year: 2017
  end-page: 274
  article-title: Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi‐batch metabolomics data
  publication-title: Journal of Chromatography A
– volume: 12
  year: 2017
  article-title: RRmix: a method for simultaneous batch effect correction and analysis of metabolomics data in the absence of internal standards
  publication-title: PLOS One
– volume: 109
  start-page: 162
  year: 2011
  end-page: 170
  article-title: Quantification and statistical significance analysis of group separation in NMR‐based metabonomics studies
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 12
  start-page: 89
  year: 2016
  article-title: Normalization and integration of large‐scale metabolomics data using support vector regression
  publication-title: Metabolomics
– volume: 11
  start-page: 583
  year: 2004
  end-page: 584
  article-title: High‐resolution serum proteomic patterns for ovarian cancer detection
  publication-title: Endocrine‐Related Cancer
– volume: 10
  year: 2015
  article-title: Metabolomic profiling of 13 diatom cultures and their adaptation to nitrate‐limited growth conditions
  publication-title: PLOS One
– volume: 1019
  start-page: 38
  year: 2018
  end-page: 48
  article-title: Evaluation of batch effect elimination using quality control replicates in LC‐MS metabolite profiling
  publication-title: Analytica Chimica Acta
– volume: 31
  start-page: 73
  year: 2015
  end-page: 78
  article-title: High‐throughput discovery metabolomics
  publication-title: Current Opinion in Biotechnology
– volume: 19
  start-page: 401
  year: 2005
  end-page: 407
  article-title: Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not?
  publication-title: Rapid Communications in Mass Spectrometry: an International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry
– volume: 6
  start-page: 1060
  year: 2011
  end-page: 1083
  article-title: Procedures for large‐scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry
  publication-title: Nature Protocols
– volume: 89
  start-page: 9424
  year: 2017
  end-page: 9431
  article-title: Overcoming sample matrix effect in quantitative blood metabolomics using chemical isotope labeling liquid chromatography‐mass spectrometry
  publication-title: Analytical Chemistry
– volume: 1036
  start-page: 66
  year: 2018
  end-page: 72
  article-title: statTarget: a streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry‐based omics data
  publication-title: Analytica Chimica Acta
– volume: 370
  start-page: 17
  year: 2007
  end-page: 25
  article-title: Microbial metabolomics: toward a platform with full metabolome coverage
  publication-title: Analytical Biochemistry
– volume: 88
  start-page: 2234
  year: 2016
  end-page: 2242
  article-title: A novel strategy for large‐scale metabolomics study by calibrating gross and systematic errors in gas chromatography–mass spectrometry
  publication-title: Analytical Chemistry
– volume: 81
  start-page: 3919
  year: 2009
  end-page: 3932
  article-title: Differential C‐/ C‐isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome
  publication-title: Analytical Chemistry
– volume: 131
  start-page: 1075
  year: 2006
  end-page: 1078
  article-title: A pragmatic and readily implemented quality control strategy for HPLC‐MS and GC‐MS‐based metabonomic analysis
  publication-title: Analyst
– volume: 76
  start-page: 1295
  year: 2013
  end-page: 1305
  article-title: Targeted metabolomics of dried blood spot extracts
  publication-title: Chromatographia
– volume: 8
  start-page: 470
  year: 2012
  end-page: 481
  article-title: LC‐MS‐based metabolomics
  publication-title: Molecular BioSystems
– volume: 36
  start-page: 421
  year: 2018
  end-page: 427
  article-title: Batch effects in single‐cell RNA‐sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nature Biotechnology
– volume: 27
  start-page: 251
  year: 2008
  end-page: 260
  article-title: LC‐MS‐based methodology for global metabolite profiling in metabonomics/metabolomics
  publication-title: Trends in Analytical Chemistry
– volume: 10
  start-page: 51
  year: 2020
  article-title: Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine
  publication-title: Metabolites
– volume: 53
  start-page: 623
  year: 2010
  end-page: 630
  article-title: Strategies to minimize variability and bias associated with manual pipetting in ligand binding assays to assure data quality of protein therapeutic quantification
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 75
  start-page: 3938
  year: 2012
  end-page: 3951
  article-title: Batch effects correction improves the sensitivity of significance tests in spectral counting‐based comparative discovery proteomics
  publication-title: Journal of Proteomics
– volume: 8
  start-page: 93
  year: 2007
  article-title: Normalization method for metabolomics data using optimal selection of multiple internal standards
  publication-title: BMC Bioinformatics
– volume: 1430
  start-page: 80
  year: 2016
  end-page: 95
  article-title: Sample normalization methods in quantitative metabolomics
  publication-title: Journal of Chromatography A
– volume: 81
  start-page: 7974
  year: 2009
  end-page: 7980
  article-title: Compensation for systematic cross‐contribution improves normalization of mass spectrometry based metabolomics data
  publication-title: Analytical Chemistry
– volume: 35
  start-page: 498
  year: 2017
  end-page: 507
  article-title: Why batch effects matter in omics data, and how to avoid them
  publication-title: Trends in Biotechnology
– volume: 1255
  start-page: 228
  year: 2012
  end-page: 236
  article-title: A novel approach to transforming a non‐targeted metabolic profiling method to a pseudo‐targeted method using the retention time locking gas chromatography/mass spectrometry‐selected ions monitoring
  publication-title: Journal of Chromatography A
– volume: 29
  start-page: 111
  year: 2010
  end-page: 119
  article-title: Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation
  publication-title: Trends in Analytical Chemistry
– volume: 84
  start-page: 10723
  year: 2012
  end-page: 10731
  article-title: Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry‐based metabolomics
  publication-title: Analytical Chemistry
– volume: 25
  start-page: 2573
  year: 2009
  end-page: 2580
  article-title: Normalization of peak intensities in bottom‐up MS‐based proteomics using singular value decomposition
  publication-title: Bioinformatics
– volume: 195
  start-page: 77
  year: 2019
  end-page: 86
  article-title: Removal of batch effects using stratified subsampling of metabolomic data for in vitro endocrine disruptors screening
  publication-title: Talanta
– volume: 91
  start-page: 3590
  year: 2019
  end-page: 3596
  article-title: Systematic error removal using random forest for normalizing large‐scale untargeted lipidomics data
  publication-title: Analytical Chemistry
– volume: 15
  start-page: 473
  year: 2016
  end-page: 484
  article-title: Emerging applications of metabolomics in drug discovery and precision medicine
  publication-title: Nature Reviews Drug Discovery
– volume: 11
  start-page: 9
  year: 2015
  end-page: 26
  article-title: Molecular phenotyping of a UK population: defining the human serum metabolome
  publication-title: Metabolomics
– volume: 11
  start-page: 1733
  year: 2015
  end-page: 1742
  article-title: Matrix effect on chemical isotope labeling and its implication in metabolomic sample preparation for quantitative metabolomics
  publication-title: Metabolomics
– volume: 86
  start-page: 6540
  year: 2014
  end-page: 6547
  article-title: Development of a universal metabolome‐standard method for long‐term LC–MS metabolome profiling and its application for bladder cancer urine‐metabolite‐biomarker discovery
  publication-title: Analytical chemistry
– volume: 8
  start-page: 192
  year: 2015
  end-page: 206
  article-title: Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics
  publication-title: Circulation: Cardiovascular Genetics
– volume: 14
  start-page: 365
  year: 2013
  end-page: 376
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nature Reviews Neuroscience
– volume: 69
  start-page: 1471
  year: 2006
  end-page: 1476
  article-title: Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery
  publication-title: Kidney International
– volume: 1026
  start-page: 62
  year: 2018
  end-page: 68
  article-title: Model selection for within‐batch effect correction in UPLC‐MS metabolomics using quality control‐support vector regression
  publication-title: Analytica Chimica Acta
– volume: 9
  start-page: 247
  year: 2019
  article-title: Troubleshooting in large‐scale LC‐ToF‐MS metabolomics analysis: solving complex issues in big cohorts
  publication-title: Metabolites
– volume: 20
  start-page: 105
  year: 2004
  end-page: 114
  article-title: Adjustment of systematic microarray data biases
  publication-title: Bioinformatics
– volume: 768
  start-page: 118
  year: 2013
  end-page: 128
  article-title: UPLC‐ESI‐QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: effect of experimental artefacts and anticoagulant
  publication-title: Analytica Chimica Acta
– volume: 3
  start-page: 19
  year: 2007
  end-page: 27
  article-title: Urine stability for metabolomic studies: effects of preparation and storage
  publication-title: Metabolomics
– volume: 115
  start-page: 91
  year: 2015
  end-page: 94
  article-title: Aromatic L‐amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma
  publication-title: Molecular Genetics and Metabolism
– volume: 29
  start-page: 2877
  year: 2013
  end-page: 2883
  article-title: A new statistic for identifying batch effects in high‐throughput genomic data that uses guided principal component analysis
  publication-title: Bioinformatics
– volume: 92
  start-page: 5082
  year: 2020
  end-page: 5090
  article-title: NormAE: deep adversarial learning model to remove batch effects in liquid chromatography mass spectrometry‐based metabolomics data
  publication-title: Analytical Chemistry
– volume: 1061
  start-page: 60
  year: 2019
  end-page: 69
  article-title: WaveICA: a novel algorithm to remove batch effects for large‐scale untargeted metabolomics data based on wavelet analysis
  publication-title: Analytica Chimica Acta
– volume: 7
  start-page: 508
  year: 2012
  end-page: 516
  article-title: Meta‐analysis of untargeted metabolomic data from multiple profiling experiments
  publication-title: Nature Protocols
– volume: 8
  start-page: 118
  year: 2007
  end-page: 127
  article-title: Adjusting batch effects in microarray expression data using empirical Bayes methods
  publication-title: Biostatistics
– volume: 43
  start-page: 34
  year: 2017
  end-page: 40
  article-title: The future of NMR‐based metabolomics
  publication-title: Current Opinion in Biotechnology
– volume: 78
  start-page: 567
  year: 2006
  end-page: 574
  article-title: Large‐scale human metabolomics studies: a strategy for data (pre‐) processing and validation
  publication-title: Analytical Chemistry
– volume: 44
  start-page: D463
  year: 2015
  end-page: D470
  article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools
  publication-title: Nucleic Acids Research
– volume: 11
  start-page: 733
  year: 2010
  end-page: 739
  article-title: Tackling the widespread and critical impact of batch effects in high‐throughput data
  publication-title: Nature Reviews Genetics
– volume: 2
  start-page: 775
  year: 2012
  end-page: 795
  article-title: A guideline to univariate statistical analysis for LC/MS‐based untargeted metabolomics‐derived data
  publication-title: Metabolites
– volume: 130
  start-page: 141
  year: 2016
  end-page: 168
  article-title: Metabolomics studies in brain tissue: a review
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 475
  start-page: 22
  year: 2015
  end-page: 28
  article-title: Extraction parameters for metabolomics from cultured cells
  publication-title: Analytical Biochemistry
– volume: 32
  start-page: 2183
  year: 2009
  end-page: 2199
  article-title: Analytical and statistical approaches to metabolomics research
  publication-title: Journal of Separation Science
– volume: 84
  start-page: 10768
  year: 2012
  end-page: 10776
  article-title: Normalizing and integrating metabolomics data
  publication-title: Analytical Chemistry
– volume: 8
  start-page: 1134
  year: 2016
  end-page: 1142
  article-title: Meta‐analysis of clinical metabolic profiling studies in cancer: challenges and opportunities
  publication-title: EMBO Molecular Medicine
– volume: 92
  start-page: 9265
  year: 2020a
  end-page: 9272
  article-title: Effects of freeze‐thaw cycles of blood samples on high‐coverage quantitative metabolomics
  publication-title: Analytical Chemistry
– volume: 411
  start-page: 6983
  year: 2019
  end-page: 6994
  article-title: Optimal inter‐batch normalization method for GC/MS/MS‐based targeted metabolomics with special attention to centrifugal concentration
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 82
  start-page: 9177
  year: 2010
  end-page: 9187
  article-title: Evaluation of peak picking quality in LC‐MS metabolomics data
  publication-title: Analytical Chemistry
– volume: 887
  start-page: 118
  year: 2015
  end-page: 126
  article-title: Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography–mass spectrometry in high resolution mode
  publication-title: Analytica Chimica Acta
– volume: 36
  start-page: 2148
  year: 2015
  end-page: 2155
  article-title: Effects of processing and storage conditions on charged metabolomic profiles in blood
  publication-title: Electrophoresis
– volume: 405
  start-page: 5147
  year: 2013
  end-page: 5157
  article-title: Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 13
  start-page: 1580
  year: 1999
  end-page: 1585
  article-title: Reproducibility of matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry for replicate bacterial culture analysis
  publication-title: Rapid Communications in Mass Spectrometry
– volume: 871
  start-page: 236
  year: 2008
  end-page: 242
  article-title: Analytical strategies for LC–MS‐based targeted metabolomics
  publication-title: Journal of chromatography B
– volume: 97
  start-page: 315
  year: 2005
  end-page: 319
  article-title: Lessons from controversy: ovarian cancer screening and serum proteomics
  publication-title: Journal of the National Cancer Institute
– volume: 9
  year: 2014
  article-title: Metabolomics data normalization with EigenMS
  publication-title: PLOS One
– volume: 32
  start-page: 902
  year: 2012
  end-page: 910
  article-title: Controlled attenuation parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography
  publication-title: Liver International
– volume: 41
  start-page: D781
  year: 2012
  end-page: D786
  article-title: MetaboLights—an open‐access general‐purpose repository for metabolomics studies and associated meta‐data
  publication-title: Nucleic acids research
– year: 2020
– volume: 871
  start-page: 227
  year: 2008
  end-page: 235
  article-title: Instrumental and experimental effects in LC–MS‐based metabolomics
  publication-title: Journal of Chromatography B
– volume: 20
  start-page: 2447
  year: 2004
  end-page: 2454
  article-title: Metabolite fingerprinting: detecting biological features by independent component analysis
  publication-title: Bioinformatics
– volume: 137
  start-page: 293
  year: 2012
  end-page: 300
  article-title: Modern analytical techniques in metabolomics analysis
  publication-title: Analyst
– volume: 406
  start-page: 3723
  year: 2014
  end-page: 3733
  article-title: Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC‐TOF‐MS
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 87
  start-page: 3606
  year: 2015
  end-page: 3615
  article-title: Statistical methods for handling unwanted variation in metabolomics data
  publication-title: Analytical Chemistry
– volume: 48
  start-page: W436
  year: 2020
  end-page: W448
  article-title: NOREVA: enhanced normalization and evaluation of time‐course and multi‐class metabolomic data
  publication-title: Nucleic Acids Research
– ident: e_1_2_11_45_1
  doi: 10.1021/ac0352427
– ident: e_1_2_11_40_1
  doi: 10.1093/nar/gks1004
– volume: 1
  start-page: 92
  year: 2013
  ident: e_1_2_11_100_1
  article-title: Multivariate analysis in metabolomics
  publication-title: Current Metabolomics
– ident: e_1_2_11_10_1
  doi: 10.1021/ac101216e
– ident: e_1_2_11_78_1
  doi: 10.1039/b604498k
– ident: e_1_2_11_91_1
  doi: 10.1016/j.chroma.2017.09.023
– ident: e_1_2_11_39_1
  doi: 10.1007/s11306-015-0826-3
– ident: e_1_2_11_41_1
  doi: 10.1002/elps.201400600
– ident: e_1_2_11_108_1
  doi: 10.1039/C1AN15605E
– ident: e_1_2_11_61_1
  doi: 10.1016/j.copbio.2016.08.001
– ident: e_1_2_11_43_1
  doi: 10.1007/BF02289588
– ident: e_1_2_11_42_1
  doi: 10.1002/jssc.200900152
– ident: e_1_2_11_54_1
  doi: 10.1093/nar/gkx449
– ident: e_1_2_11_112_1
  doi: 10.1007/s10337-013-2429-3
– ident: e_1_2_11_63_1
  doi: 10.1093/biostatistics/kxv027
– ident: e_1_2_11_76_1
  doi: 10.1016/j.aca.2018.04.055
– ident: e_1_2_11_59_1
  doi: 10.1016/j.aca.2018.08.002
– ident: e_1_2_11_62_1
  doi: 10.1111/j.1478-3231.2012.02781.x
– ident: e_1_2_11_24_1
  doi: 10.1007/s11306-014-0707-1
– ident: e_1_2_11_97_1
  doi: 10.1007/s11306-016-1015-8
– ident: e_1_2_11_109_1
  doi: 10.1021/acs.analchem.5b03912
– ident: e_1_2_11_51_1
  doi: 10.1016/j.talanta.2014.07.031
– ident: e_1_2_11_96_1
  doi: 10.1021/ac302877x
– ident: e_1_2_11_111_1
  doi: 10.1038/sj.ki.5000273
– ident: e_1_2_11_64_1
  doi: 10.1016/j.jpba.2010.04.025
– ident: e_1_2_11_81_1
  doi: 10.1093/bioinformatics/btx196
– ident: e_1_2_11_102_1
  doi: 10.1021/ac3025625
– ident: e_1_2_11_52_1
  doi: 10.1039/C5AN01638J
– ident: e_1_2_11_20_1
  doi: 10.1021/ac302748b
– ident: e_1_2_11_68_1
  doi: 10.1093/jnci/dji054
– ident: e_1_2_11_55_1
  doi: 10.1016/j.chroma.2012.01.076
– ident: e_1_2_11_70_1
  doi: 10.1093/bioinformatics/btt480
– ident: e_1_2_11_106_1
  doi: 10.1016/j.chroma.2010.09.055
– ident: e_1_2_11_83_1
  doi: 10.1161/CIRCGENETICS.114.000216
– ident: e_1_2_11_73_1
  doi: 10.1021/acs.analchem.9b05460
– ident: e_1_2_11_75_1
  doi: 10.1371/journal.pone.0179530
– ident: e_1_2_11_28_1
  doi: 10.1093/bioinformatics/btu423
– ident: e_1_2_11_66_1
  doi: 10.1021/ac5011684
– ident: e_1_2_11_17_1
  doi: 10.1021/acs.analchem.0c01610
– ident: e_1_2_11_29_1
  doi: 10.1016/j.copbio.2014.08.006
– ident: e_1_2_11_65_1
  doi: 10.1038/nprot.2011.454
– ident: e_1_2_11_21_1
  doi: 10.1016/j.aca.2019.02.010
– ident: e_1_2_11_2_1
  doi: 10.1016/j.trac.2009.12.003
– ident: e_1_2_11_13_1
  doi: 10.1016/j.jchromb.2008.04.044
– ident: e_1_2_11_11_1
  doi: 10.1371/journal.pone.0138965
– ident: e_1_2_11_104_1
  doi: 10.1007/s11306-012-0482-9
– ident: e_1_2_11_36_1
  doi: 10.1086/626134
– ident: e_1_2_11_74_1
  doi: 10.1002/(SICI)1097-0231(19990815)13:15<1580::AID-RCM679>3.0.CO;2-V
– ident: e_1_2_11_35_1
  doi: 10.1016/j.jprot.2012.05.005
– ident: e_1_2_11_92_1
  doi: 10.1038/srep39921
– year: 2020
  ident: e_1_2_11_18_1
  article-title: High tolerance to instrument drifts by differential chemical isotope labeling LC‐MS: A case study of the effect of LC leak in long‐term sample runs on quantitative metabolome analysis
  publication-title: Journal of Mass Spectrometry
– ident: e_1_2_11_58_1
  doi: 10.1016/j.jchromb.2008.04.031
– ident: e_1_2_11_82_1
  doi: 10.1007/s11306-016-1026-5
– ident: e_1_2_11_95_1
  doi: 10.3390/metabo2040775
– ident: e_1_2_11_12_1
  doi: 10.1007/s11306-016-1124-4
– ident: e_1_2_11_47_1
  doi: 10.1371/journal.pone.0116221
– ident: e_1_2_11_88_1
  doi: 10.1186/1471-2105-8-93
– ident: e_1_2_11_67_1
  doi: 10.1016/j.aca.2015.07.008
– ident: e_1_2_11_69_1
  doi: 10.1021/ac901143w
– ident: e_1_2_11_19_1
  doi: 10.1007/978-1-4939-9744-2_16
– ident: e_1_2_11_16_1
  doi: 10.1021/acs.analchem.7b02240
– ident: e_1_2_11_110_1
  doi: 10.1039/C1MB05350G
– ident: e_1_2_11_87_1
  doi: 10.1007/s11306-006-0042-2
– ident: e_1_2_11_94_1
  doi: 10.1021/ac201065j
– ident: e_1_2_11_5_1
  doi: 10.1016/j.aca.2013.01.015
– ident: e_1_2_11_23_1
  doi: 10.1038/nprot.2011.335
– ident: e_1_2_11_22_1
  doi: 10.1007/s11306-016-1030-9
– ident: e_1_2_11_4_1
  doi: 10.1677/erc.1.00868
– ident: e_1_2_11_15_1
  doi: 10.1021/acs.analchem.5b04491
– ident: e_1_2_11_32_1
  doi: 10.1016/j.jpba.2016.07.008
– ident: e_1_2_11_79_1
  doi: 10.1093/bioinformatics/bth270
– ident: e_1_2_11_90_1
  doi: 10.1016/j.trac.2008.01.008
– ident: e_1_2_11_50_1
  doi: 10.1007/s00216-013-6856-7
– ident: e_1_2_11_60_1
  doi: 10.1021/ac070212f
– ident: e_1_2_11_33_1
  doi: 10.1016/j.chemolab.2011.08.009
– ident: e_1_2_11_105_1
  doi: 10.1093/nar/gkaa258
– ident: e_1_2_11_49_1
  doi: 10.1016/j.drudis.2006.10.004
– ident: e_1_2_11_86_1
  doi: 10.1093/nar/gkv1042
– ident: e_1_2_11_84_1
  doi: 10.1186/1471-2105-12-337
– ident: e_1_2_11_14_1
  doi: 10.1038/nrn3475
– ident: e_1_2_11_101_1
  doi: 10.1016/j.ab.2004.09.001
– ident: e_1_2_11_85_1
  doi: 10.1002/rcm.1790
– ident: e_1_2_11_93_1
  doi: 10.1016/j.ab.2007.07.022
– ident: e_1_2_11_31_1
  doi: 10.1016/j.tibtech.2017.02.012
– ident: e_1_2_11_98_1
  doi: 10.1016/j.chroma.2015.02.025
– ident: e_1_2_11_30_1
  doi: 10.1007/s11306-014-0712-4
– ident: e_1_2_11_77_1
  doi: 10.1016/j.aca.2018.02.053
– ident: e_1_2_11_3_1
  doi: 10.1016/j.ymgme.2015.04.008
– ident: e_1_2_11_34_1
  doi: 10.15252/emmm.201606798
– ident: e_1_2_11_89_1
  doi: 10.1021/ac051972y
– ident: e_1_2_11_6_1
  doi: 10.1093/bioinformatics/btg385
– ident: e_1_2_11_38_1
  doi: 10.1038/nbt.4091
– ident: e_1_2_11_99_1
  doi: 10.1038/nrd.2016.32
– ident: e_1_2_11_56_1
  doi: 10.1021/ac502439y
– ident: e_1_2_11_103_1
  doi: 10.1016/j.chroma.2015.12.007
– ident: e_1_2_11_27_1
  doi: 10.1007/s00216-014-7797-5
– ident: e_1_2_11_7_1
  doi: 10.1021/ac051495j
– ident: e_1_2_11_25_1
  doi: 10.1089/omi.2013.0010
– ident: e_1_2_11_53_1
  doi: 10.1038/nrg2825
– ident: e_1_2_11_9_1
  doi: 10.1021/acs.analchem.7b04400
– ident: e_1_2_11_44_1
  doi: 10.1093/biostatistics/kxj037
– ident: e_1_2_11_80_1
  doi: 10.1016/j.ab.2015.01.003
– ident: e_1_2_11_46_1
  doi: 10.1016/j.jchromb.2008.04.049
– ident: e_1_2_11_71_1
  doi: 10.1186/s12859-017-1501-7
– ident: e_1_2_11_72_1
  doi: 10.3390/metabo9110247
– ident: e_1_2_11_37_1
  doi: 10.1021/ac900166a
– ident: e_1_2_11_8_1
  doi: 10.1016/j.talanta.2018.11.019
– ident: e_1_2_11_107_1
  doi: 10.1007/s00216-019-02073-w
– ident: e_1_2_11_26_1
  doi: 10.1021/acs.analchem.8b05592
– ident: e_1_2_11_48_1
  doi: 10.1093/bioinformatics/btp426
– ident: e_1_2_11_57_1
  doi: 10.3390/metabo10020051
SSID ssj0011511
Score 2.5798986
SecondaryResourceType review_article
Snippet Determining metabolomic differences among samples of different phenotypes is a critical component of metabolomics research. With the rapid advances in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 421
SubjectTerms batch effect
Mass Spectrometry
Mass spectroscopy
Metabolome
metabolome analysis
Metabolomics
Metabolomics - methods
NMR
Phenotypes
Title Evaluating and minimizing batch effects in metabolomics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmas.21672
https://www.ncbi.nlm.nih.gov/pubmed/33238061
https://www.proquest.com/docview/2647615961
https://www.proquest.com/docview/2464607301
Volume 41
WOSCitedRecordID wos000592061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2787
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011511
  issn: 0277-7037
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7ojIIX92XcqOLBS7XN0qR4EnXwoCIuMLeSZtEBp4qd8eCvN0k7FVFB8NaSF1Lelte8l-8B7BmhDE9SEUYJ0vYHRZBQaByFLBeacUqxRtI3m2BXV7zXS68n4Gh8F6bCh2gO3JxleH_tDFzk5eEnaOhAlAcoTpj1v21k9Za2oH16072_aJIIdjPzDfNcltISsDGwUIQOm8lft6NvMebXkNXvOd25f33tPMzWoWZwXOnGAkzoYhGmfcmnLJeAndVA38VDIAoVOJCRQf_dvebWPz8GdalH0C-CgR5aZXlyN5jLZbjvnt2dnId1G4VQuhRvKGIV5RQLYaWhlYyYViJPmYm5klhxiaiVouQKI01yQdOUJApTkSNmeJ5iglegVTwXes3VQWkjaayIUZLISHODFGFGu75WJqKoA_tjbmayxhh3rS6esgodGWWWD5nnQwd2G9KXCljjJ6LNsUiy2rbsSEKYjcPSJO7ATjNsrcKlOkShn0eWhiQk8d6rA6uVKJtVMLZhSuRm73uJ_b58dnl86x_W_066ATPI3ZDwNZGb0Bq-jvQWTMm3Yb983YZJ1uPbtaJ-AB7K6hw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IU_TF-2U6tYoPe6lrk7RpwRfRDcU5RB3sraS56MBV2cUHf71J2lVEBcG3lpyQcm45zTn5DsCxYkJFYcxcL0RS_6Aw4jKJPZemTNIoCLBE3DaboJ1O1OvFtzNwOr0Lk-NDlAduxjKsvzYGbg6kG5-ooQM2OkF-SLUDrhCtRlq_Kxd3rW67zCLo3cx2zDNpSq3ZdIos5KFGOfnrfvQtyPwas9pNp7X8v89dgaUi2HTOcu1YhRmZrcG8Lfrko3WgzQLqO3t0WCYcAzMy6L-b11R76CenKPZw-pkzkGOtLs_mDvNoA7qt5sP5pVs0UnC5SfK6zBdeGmDGtDyk4B6VgqUxVX4kOBYRR4GWI48ERpKkLIhjEgocsBRRFaUxJngTZrOXTG6bSiipeOALogQn3JORQoJQJU1nK-UFqAr1KTsTXqCMm2YXz0mOj4wSzYfE8qEKRyXpaw6t8RNRbSqTpLAuPRISqiOxOPSrcFgOa7swyQ6WyZeJpiEhCa3_qsJWLstyFYx1oOKZ2XUrst-XT27O7u3Dzt9JD2Dh8uGmnbSvOte7sIjMfQlbIVmD2fFwIvdgjr-N-6PhfqGvH6HD7SQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_IpuLF74_p1CoevNS1Sdq04GXohuIcog68lTQfOnB1uOnBv94k7SpDBcFbS15IeV95zXv5PYAjxYSKwpi5Xoik_kFhxGUSey5NmaRREGCJuG02Qbvd6OEhvpmB08ldmBwfojxwM5Zh_bUxcDkUqvGFGjpgoxPkh1Q74CoxTWQqUD2_bfc6ZRZB72a2Y55JU2rNphNkIQ81ysnT-9G3IHM6ZrWbTnvpf5-7DItFsOk0c-1YgRmZrcKcLfrkozWgrQLqO3t0WCYcAzMy6H-Y11R76CenKPZw-pkzkGOtLs_mDvNoHXrt1v3ZhVs0UnC5SfK6zBdeGmDGtDyk4B6VgqUxVX4kOBYRR4GWI48ERpKkLIhjEgocsBRRFaUxJngDKtlLJrdMJZRUPPAFUYIT7slIIUGokqazlfICVIPjCTsTXqCMm2YXz0mOj4wSzYfE8qEGhyXpMIfW-ImoPpFJUliXHgkJ1ZFYHPo1OCiHtV2YZAfL5MubpiEhCa3_qsFmLstyFYx1oOKZ2cdWZL8vn1w37-zD9t9J92H-5ryddC67VzuwgMx1CVsgWYfK-PVN7sIsfx_3R697hbp-Akjs7J8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+and+minimizing+batch+effects+in+metabolomics&rft.jtitle=Mass+spectrometry+reviews&rft.au=Han%2C+Wei&rft.au=Li%2C+Liang&rft.date=2022-05-01&rft.issn=0277-7037&rft.eissn=1098-2787&rft.volume=41&rft.issue=3&rft.spage=421&rft.epage=442&rft_id=info:doi/10.1002%2Fmas.21672&rft.externalDBID=10.1002%252Fmas.21672&rft.externalDocID=MAS21672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-7037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-7037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-7037&client=summon