Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice

The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of pathology Ročník 249; číslo 2; s. 143 - 150
Hlavní autoři: Colling, Richard, Pitman, Helen, Oien, Karin, Rajpoot, Nasir, Macklin, Philip, Bachtiar, Velicia, Booth, Richard, Bryant, Alyson, Bull, Joshua, Bury, Jonathan, Carragher, Fiona, Collins, Graeme, Craig, Clare, da Silva, Maria Freitas, Gosling, Daniel, Jacobs, Jaco, Kajland‐Wilén, Lena, Karling, Johanna, Lawler, Darragh, Lee, Stephen, Miller, Keith, Mozolowski, Guy, Nicholson, Richard, O'Connor, Daniel, Rahbek, Mikkel, Sumner, Alan, Vossen, Dirk, White, Kieron, Wing, Charlotte, Wright, Corrina, Snead, David, Sackville, Tony, Verrill, Clare
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.10.2019
Wiley Subscription Services, Inc
Témata:
ISSN:0022-3417, 1096-9896, 1096-9896
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting practice of diagnostic histopathology and this has sparked a proliferation of image analysis software tools. While this is an exciting development that could discover novel predictive clinical information and potentially address international pathology workforce shortages, there is a clear need for a robust and evidence‐based framework in which to develop these new tools in a collaborative manner that meets regulatory approval. With these issues in mind, the NCRI Cellular Molecular Pathology (CM‐Path) initiative and the British In Vitro Diagnostics Association (BIVDA) have set out a roadmap to help academia, industry, and clinicians develop new software tools to the point of approved clinical use. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
AbstractList The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting practice of diagnostic histopathology and this has sparked a proliferation of image analysis software tools. While this is an exciting development that could discover novel predictive clinical information and potentially address international pathology workforce shortages, there is a clear need for a robust and evidence‐based framework in which to develop these new tools in a collaborative manner that meets regulatory approval. With these issues in mind, the NCRI Cellular Molecular Pathology (CM‐Path) initiative and the British In Vitro Diagnostics Association (BIVDA) have set out a roadmap to help academia, industry, and clinicians develop new software tools to the point of approved clinical use. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting practice of diagnostic histopathology and this has sparked a proliferation of image analysis software tools. While this is an exciting development that could discover novel predictive clinical information and potentially address international pathology workforce shortages, there is a clear need for a robust and evidence-based framework in which to develop these new tools in a collaborative manner that meets regulatory approval. With these issues in mind, the NCRI Cellular Molecular Pathology (CM-Path) initiative and the British In Vitro Diagnostics Association (BIVDA) have set out a roadmap to help academia, industry, and clinicians develop new software tools to the point of approved clinical use. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting practice of diagnostic histopathology and this has sparked a proliferation of image analysis software tools. While this is an exciting development that could discover novel predictive clinical information and potentially address international pathology workforce shortages, there is a clear need for a robust and evidence-based framework in which to develop these new tools in a collaborative manner that meets regulatory approval. With these issues in mind, the NCRI Cellular Molecular Pathology (CM-Path) initiative and the British In Vitro Diagnostics Association (BIVDA) have set out a roadmap to help academia, industry, and clinicians develop new software tools to the point of approved clinical use. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Author Colling, Richard
Craig, Clare
Karling, Johanna
Sackville, Tony
Oien, Karin
Snead, David
Bachtiar, Velicia
Rajpoot, Nasir
da Silva, Maria Freitas
Mozolowski, Guy
Verrill, Clare
Carragher, Fiona
Gosling, Daniel
Wing, Charlotte
O'Connor, Daniel
Wright, Corrina
Collins, Graeme
Lawler, Darragh
Sumner, Alan
Jacobs, Jaco
Kajland‐Wilén, Lena
Miller, Keith
Macklin, Philip
Bull, Joshua
Lee, Stephen
Bryant, Alyson
Pitman, Helen
Rahbek, Mikkel
White, Kieron
Nicholson, Richard
Bury, Jonathan
Vossen, Dirk
Booth, Richard
Author_xml – sequence: 1
  givenname: Richard
  orcidid: 0000-0001-6344-9081
  surname: Colling
  fullname: Colling, Richard
  email: richard.colling@nds.ox.ac.uk
  organization: University of Oxford, John Radcliffe Hospital
– sequence: 2
  givenname: Helen
  surname: Pitman
  fullname: Pitman, Helen
  organization: National Cancer Research Institute
– sequence: 3
  givenname: Karin
  surname: Oien
  fullname: Oien, Karin
  organization: University of Glasgow
– sequence: 4
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
  organization: University of Warwick
– sequence: 5
  givenname: Philip
  orcidid: 0000-0002-7750-3242
  surname: Macklin
  fullname: Macklin, Philip
  organization: University of Oxford
– sequence: 7
  givenname: Velicia
  surname: Bachtiar
  fullname: Bachtiar, Velicia
– sequence: 8
  givenname: Richard
  surname: Booth
  fullname: Booth, Richard
– sequence: 9
  givenname: Alyson
  surname: Bryant
  fullname: Bryant, Alyson
– sequence: 10
  givenname: Joshua
  surname: Bull
  fullname: Bull, Joshua
– sequence: 11
  givenname: Jonathan
  surname: Bury
  fullname: Bury, Jonathan
– sequence: 12
  givenname: Fiona
  surname: Carragher
  fullname: Carragher, Fiona
– sequence: 13
  givenname: Richard
  surname: Colling
  fullname: Colling, Richard
– sequence: 14
  givenname: Graeme
  surname: Collins
  fullname: Collins, Graeme
– sequence: 15
  givenname: Clare
  surname: Craig
  fullname: Craig, Clare
– sequence: 16
  givenname: Maria Freitas
  surname: da Silva
  fullname: da Silva, Maria Freitas
– sequence: 17
  givenname: Daniel
  surname: Gosling
  fullname: Gosling, Daniel
– sequence: 18
  givenname: Jaco
  surname: Jacobs
  fullname: Jacobs, Jaco
– sequence: 19
  givenname: Lena
  surname: Kajland‐Wilén
  fullname: Kajland‐Wilén, Lena
– sequence: 20
  givenname: Johanna
  surname: Karling
  fullname: Karling, Johanna
– sequence: 21
  givenname: Darragh
  surname: Lawler
  fullname: Lawler, Darragh
– sequence: 22
  givenname: Stephen
  surname: Lee
  fullname: Lee, Stephen
– sequence: 23
  givenname: Philip
  surname: Macklin
  fullname: Macklin, Philip
– sequence: 24
  givenname: Keith
  surname: Miller
  fullname: Miller, Keith
– sequence: 25
  givenname: Guy
  surname: Mozolowski
  fullname: Mozolowski, Guy
– sequence: 26
  givenname: Richard
  surname: Nicholson
  fullname: Nicholson, Richard
– sequence: 27
  givenname: Daniel
  surname: O'Connor
  fullname: O'Connor, Daniel
– sequence: 28
  givenname: Mikkel
  surname: Rahbek
  fullname: Rahbek, Mikkel
– sequence: 29
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
– sequence: 30
  givenname: Alan
  surname: Sumner
  fullname: Sumner, Alan
– sequence: 31
  givenname: Dirk
  surname: Vossen
  fullname: Vossen, Dirk
– sequence: 32
  givenname: Kieron
  surname: White
  fullname: White, Kieron
– sequence: 33
  givenname: Charlotte
  surname: Wing
  fullname: Wing, Charlotte
– sequence: 34
  givenname: Corrina
  surname: Wright
  fullname: Wright, Corrina
– sequence: 35
  givenname: David
  surname: Snead
  fullname: Snead, David
  organization: University Hospitals Coventry and Warwickshire NHS Trust, University Hospital
– sequence: 36
  givenname: Tony
  surname: Sackville
  fullname: Sackville, Tony
  organization: British In Vitro Diagnostics Association
– sequence: 37
  givenname: Clare
  surname: Verrill
  fullname: Verrill, Clare
  organization: University of Oxford, John Radcliffe Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31144302$$D View this record in MEDLINE/PubMed
BookMark eNp90c1LwzAUAPAgitvUg_-AFLzooVvSpG3ibQy_QNCDnjyULH2dGW0ykxTZf2_q10FQCOTr9x7JexO0a6wBhI4JnhKMs9lGhpdpTgneQWOCRZEKLopdNI53WUoZKUdo4v0aYyxEnu-jESWEMYqzMXqeu6AbrbRsE20CtK1egVEQN0mtVzrE8yG9be1qe5HIxFlZd3KTBBuXfdAGkt5_cNVqo9XgnVRBKzhEe41sPRx9zQfo6erycXGT3t1f3y7md6liROBU5pznIMpSlg1ghVUtKcNCEUJKBjSOui45Jlg1bFkqwjgVOTRQNMsackLpATr7zLtx9rUHH6pOexW_Ig3Y3ldZRjNWMs55pKe_6Nr2zsTXRSUKwWlOWFQnX6pfdlBXG6c76bbVd9kiOP8EylnvHTQ_hOBqaEk11KwaWhLt7JdVsapBWxOc1O1_EW-6he3fqauH-ePNR8Q7f8-cmw
CitedBy_id crossref_primary_10_1088_1402_4896_ad1668
crossref_primary_10_1186_s42047_022_00113_x
crossref_primary_10_1038_s41379_022_01123_6
crossref_primary_10_24215_16666038_23_e12
crossref_primary_10_1109_JTEHM_2023_3241613
crossref_primary_10_1007_s10238_021_00716_w
crossref_primary_10_1016_j_jpi_2022_100106
crossref_primary_10_1016_j_bspc_2020_102402
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_1080_20502877_2021_1996965
crossref_primary_10_1016_S0140_6736_21_00673_5
crossref_primary_10_3389_fonc_2022_924945
crossref_primary_10_1002_acg2_113
crossref_primary_10_3748_wjg_v27_i21_2818
crossref_primary_10_1136_jclinpath_2020_206854
crossref_primary_10_1186_s42047_025_00197_1
crossref_primary_10_1016_j_bbcan_2020_188452
crossref_primary_10_1136_jcp_2022_208416
crossref_primary_10_3390_diagnostics12030709
crossref_primary_10_1016_j_anndiagpath_2025_152462
crossref_primary_10_1177_13860291241304060
crossref_primary_10_3390_cancers11121860
crossref_primary_10_1186_s13000_021_01085_4
crossref_primary_10_1016_j_acpath_2022_100026
crossref_primary_10_2196_38039
crossref_primary_10_4103_jpi_jpi_84_20
crossref_primary_10_1159_000515379
crossref_primary_10_1016_j_labinv_2024_102111
crossref_primary_10_1002_path_5337
crossref_primary_10_1097_CCO_0000000000000731
crossref_primary_10_3389_pore_2024_1611815
crossref_primary_10_1016_j_jpi_2023_100299
crossref_primary_10_3390_cancers14153686
crossref_primary_10_1016_j_jpi_2023_100335
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1038_s41598_020_75180_9
crossref_primary_10_1071_AH21034
crossref_primary_10_1186_s13000_024_01452_x
crossref_primary_10_3390_cells10040787
crossref_primary_10_3390_app11020808
crossref_primary_10_3390_cancers13153811
crossref_primary_10_1177_0192623320950633
crossref_primary_10_1097_PAP_0000000000000271
crossref_primary_10_1136_bmjopen_2022_067437
crossref_primary_10_1038_s41592_021_01113_7
crossref_primary_10_1109_JBHI_2025_3548048
crossref_primary_10_3389_fonc_2020_01719
crossref_primary_10_1038_s41598_022_08351_5
crossref_primary_10_1371_journal_pone_0329078
crossref_primary_10_1002_path_5343
crossref_primary_10_1186_s12880_023_01037_y
crossref_primary_10_1038_s41388_023_02857_6
crossref_primary_10_1016_j_semcancer_2021_02_011
crossref_primary_10_1053_j_semdp_2023_02_001
crossref_primary_10_3390_diagnostics13132294
crossref_primary_10_3389_fimmu_2024_1357217
crossref_primary_10_1186_s13000_023_01352_6
crossref_primary_10_3390_app10249146
crossref_primary_10_1038_s41698_025_00934_5
crossref_primary_10_1016_j_compbiomed_2025_110841
crossref_primary_10_1109_JBHI_2020_2993560
crossref_primary_10_1089_cmb_2024_0872
crossref_primary_10_1002_advs_202400595
crossref_primary_10_1186_s12880_023_00982_y
crossref_primary_10_1002_2056_4538_12366
crossref_primary_10_1016_j_prp_2023_154996
crossref_primary_10_3390_cancers14174109
crossref_primary_10_3390_s25041207
crossref_primary_10_1007_s00521_023_08503_2
crossref_primary_10_1038_s41598_022_11782_9
crossref_primary_10_7759_cureus_56040
crossref_primary_10_1177_20552076211020240
crossref_primary_10_1016_j_labinv_2023_100176
crossref_primary_10_1016_j_jpi_2022_100174
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1016_j_jpi_2024_100374
crossref_primary_10_1186_s13104_022_05936_1
crossref_primary_10_1089_aipo_2024_0004
crossref_primary_10_1007_s00590_023_03742_4
crossref_primary_10_1155_2021_5545866
crossref_primary_10_3389_fcvm_2021_787614
crossref_primary_10_1007_s40336_020_00404_x
crossref_primary_10_1016_j_jpi_2023_100309
crossref_primary_10_1016_S1470_2045_23_00560_0
crossref_primary_10_1016_j_jpi_2022_100149
crossref_primary_10_1002_cnr2_1796
crossref_primary_10_3389_fonc_2021_626626
crossref_primary_10_1111_joim_13030
crossref_primary_10_1186_s40463_022_00566_w
crossref_primary_10_4103_jpi_jpi_27_20
crossref_primary_10_5858_arpa_2020_0541_CP
crossref_primary_10_1177_10668969231185089
crossref_primary_10_1186_s41824_022_00138_1
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_1080_00207454_2022_2095271
crossref_primary_10_1109_ACCESS_2023_3296848
crossref_primary_10_1016_j_compmedimag_2023_102321
crossref_primary_10_1016_j_modpat_2024_100657
crossref_primary_10_1016_j_mpdhp_2020_08_004
crossref_primary_10_1371_journal_pone_0273355
crossref_primary_10_1007_s00292_021_00971_4
crossref_primary_10_5858_arpa_2021_0481_OA
crossref_primary_10_1016_j_mpdhp_2024_08_001
crossref_primary_10_1038_s41388_023_02797_1
crossref_primary_10_1136_medethics_2020_107024
crossref_primary_10_3390_healthcare9101347
crossref_primary_10_1017_S2633903X24000011
crossref_primary_10_4103_jpi_jpi_38_19
crossref_primary_10_3390_diagnostics11020354
crossref_primary_10_5858_arpa_2022_0460_RA
crossref_primary_10_1016_j_procs_2022_09_129
crossref_primary_10_1038_s41379_021_00826_6
crossref_primary_10_3390_cancers13061325
crossref_primary_10_1038_s41684_021_00828_6
crossref_primary_10_1136_jclinpath_2020_206908
crossref_primary_10_1016_j_modpat_2023_100326
crossref_primary_10_3389_fonc_2021_763527
crossref_primary_10_1002_path_5388
crossref_primary_10_1016_j_labinv_2023_100244
crossref_primary_10_3390_diagnostics12112794
crossref_primary_10_1371_journal_pcbi_1010994
crossref_primary_10_1080_14737159_2024_2346545
crossref_primary_10_3390_diagnostics14131365
crossref_primary_10_3390_diagnostics12051225
crossref_primary_10_3390_healthcare9070858
crossref_primary_10_3748_wjg_v27_i44_7687
crossref_primary_10_3389_fphy_2022_940677
crossref_primary_10_1002_cjp2_251
crossref_primary_10_1016_j_modpat_2023_100297
crossref_primary_10_1016_j_jhep_2023_10_015
crossref_primary_10_3390_diagnostics11122191
crossref_primary_10_1097_PAI_0000000000001041
crossref_primary_10_1186_s13000_023_01375_z
crossref_primary_10_3138_jvme_2021_0068
crossref_primary_10_1088_1742_6596_1767_1_012031
crossref_primary_10_1038_s41416_019_0588_1
crossref_primary_10_1016_j_eng_2025_07_026
crossref_primary_10_1111_his_15071
crossref_primary_10_3390_ijerph191811597
crossref_primary_10_1186_s13000_024_01590_2
crossref_primary_10_1038_s41523_023_00577_4
Cites_doi 10.1038/s41467-018-07619-7
10.1038/s41598-018-21758-3
10.1016/j.csbj.2018.01.001
10.1038/s41598-017-16516-w
10.1136/jclinpath-2017-204808
10.1515/CCLM.2011.690
10.1002/cjp2.121
10.1097/DAD.0000000000000888
10.4103/jpi.jpi_11_17
10.1111/his.12879
10.2217/bmm-2016-0233
10.1111/his.12993
10.1038/ejhg.2010.101
10.1038/s41598-018-31799-3
ContentType Journal Article
Contributor Colling, Richard
Craig, Clare
Karling, Johanna
Bachtiar, Velicia
Rajpoot, Nasir
Kajland-Wilén, Lena
da Silva, Maria Freitas
Mozolowski, Guy
Carragher, Fiona
Gosling, Daniel
Wing, Charlotte
O'Connor, Daniel
Wright, Corrina
Collins, Graeme
Lawler, Darragh
Sumner, Alan
Jacobs, Jaco
Miller, Keith
Macklin, Philip
Bull, Joshua
Lee, Stephen
Bryant, Alyson
Rahbek, Mikkel
White, Kieron
Nicholson, Richard
Bury, Jonathan
Vossen, Dirk
Booth, Richard
Contributor_xml – sequence: 1
  givenname: Velicia
  surname: Bachtiar
  fullname: Bachtiar, Velicia
– sequence: 2
  givenname: Richard
  surname: Booth
  fullname: Booth, Richard
– sequence: 3
  givenname: Alyson
  surname: Bryant
  fullname: Bryant, Alyson
– sequence: 4
  givenname: Joshua
  surname: Bull
  fullname: Bull, Joshua
– sequence: 5
  givenname: Jonathan
  surname: Bury
  fullname: Bury, Jonathan
– sequence: 6
  givenname: Fiona
  surname: Carragher
  fullname: Carragher, Fiona
– sequence: 7
  givenname: Richard
  surname: Colling
  fullname: Colling, Richard
– sequence: 8
  givenname: Graeme
  surname: Collins
  fullname: Collins, Graeme
– sequence: 9
  givenname: Clare
  surname: Craig
  fullname: Craig, Clare
– sequence: 10
  givenname: Maria Freitas
  surname: da Silva
  fullname: da Silva, Maria Freitas
– sequence: 11
  givenname: Daniel
  surname: Gosling
  fullname: Gosling, Daniel
– sequence: 12
  givenname: Jaco
  surname: Jacobs
  fullname: Jacobs, Jaco
– sequence: 13
  givenname: Lena
  surname: Kajland-Wilén
  fullname: Kajland-Wilén, Lena
– sequence: 14
  givenname: Johanna
  surname: Karling
  fullname: Karling, Johanna
– sequence: 15
  givenname: Darragh
  surname: Lawler
  fullname: Lawler, Darragh
– sequence: 16
  givenname: Stephen
  surname: Lee
  fullname: Lee, Stephen
– sequence: 17
  givenname: Philip
  surname: Macklin
  fullname: Macklin, Philip
– sequence: 18
  givenname: Keith
  surname: Miller
  fullname: Miller, Keith
– sequence: 19
  givenname: Guy
  surname: Mozolowski
  fullname: Mozolowski, Guy
– sequence: 20
  givenname: Richard
  surname: Nicholson
  fullname: Nicholson, Richard
– sequence: 21
  givenname: Daniel
  surname: O'Connor
  fullname: O'Connor, Daniel
– sequence: 22
  givenname: Mikkel
  surname: Rahbek
  fullname: Rahbek, Mikkel
– sequence: 23
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
– sequence: 24
  givenname: Alan
  surname: Sumner
  fullname: Sumner, Alan
– sequence: 25
  givenname: Dirk
  surname: Vossen
  fullname: Vossen, Dirk
– sequence: 26
  givenname: Kieron
  surname: White
  fullname: White, Kieron
– sequence: 27
  givenname: Charlotte
  surname: Wing
  fullname: Wing, Charlotte
– sequence: 28
  givenname: Corrina
  surname: Wright
  fullname: Wright, Corrina
Copyright 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Copyright © 2019 Pathological Society of Great Britain and Ireland
Copyright_xml – notice: 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
– notice: Copyright © 2019 Pathological Society of Great Britain and Ireland
CorporateAuthor CM‐Path AI in Histopathology Working Group
CM-Path AI in Histopathology Working Group
CorporateAuthor_xml – name: CM‐Path AI in Histopathology Working Group
– name: CM-Path AI in Histopathology Working Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1002/path.5310
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9896
EndPage 150
ExternalDocumentID 31144302
10_1002_path_5310
PATH5310
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Oxford NIHR Biomedical Research Centre
– fundername: Medical Research Council
  grantid: MR/N005813/1
– fundername: Department of Health
  grantid: HTA/17/84/07
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1KJ
1L6
1OB
1OC
1ZS
29L
31~
33P
3O-
3SF
3UE
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GSXLS
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M68
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQI
YQJ
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4190-a5885e977a7fe0c0cda3409c11174e34e3dd78010cf4b7c148395efe6fbde5133
IEDL.DBID DRFUL
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3417
1096-9896
IngestDate Fri Jul 11 09:29:59 EDT 2025
Sat Nov 29 14:43:15 EST 2025
Mon Jul 21 06:02:52 EDT 2025
Sat Nov 29 07:06:15 EST 2025
Tue Nov 18 20:53:06 EST 2025
Wed Jan 22 16:38:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords digital
image
artificial
pathology
analysis
evidence-based
intelligence
Language English
License 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4190-a5885e977a7fe0c0cda3409c11174e34e3dd78010cf4b7c148395efe6fbde5133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7750-3242
0000-0001-6344-9081
PMID 31144302
PQID 2296983514
PQPubID 1006392
PageCount 8
ParticipantIDs proquest_miscellaneous_2232474888
proquest_journals_2296983514
pubmed_primary_31144302
crossref_primary_10_1002_path_5310
crossref_citationtrail_10_1002_path_5310
wiley_primary_10_1002_path_5310_PATH5310
PublicationCentury 2000
PublicationDate October 2019
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bognor Regis
PublicationTitle The Journal of pathology
PublicationTitleAlternate J Pathol
PublicationYear 2019
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2017; 7
2018; 9
2019; 10: 2
2018; 8
2017; 8
2017; 70
2019; 5
2010; 18
2016; 10
2018; 40
2018; 71
2011; 49
2018; 16
2016; 68
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
García‐Rojo M (e_1_2_12_27_1) 2019; 10
e_1_2_12_20_1
e_1_2_12_21_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
31465119 - J Pathol. 2020 Jan;250(1):7-8. doi: 10.1002/path.5343.
References_xml – volume: 70
  start-page: 134
  year: 2017
  end-page: 145
  article-title: Digital pathology in clinical use: where are we now and what is holding us back?
  publication-title: Histopathology
– volume: 10
  start-page: 1261
  year: 2016
  end-page: 1268
  article-title: The new EU regulation on diagnostics: potential issues at the interface of medicines and companion diagnostics
  publication-title: Biomarkers Med
– volume: 8
  start-page: 23
  year: 2017
  article-title: Current state of the regulatory trajectory for whole slide imaging devices in the USA
  publication-title: J Pathol Inform
– volume: 71
  start-page: 463
  year: 2018
  end-page: 466
  article-title: Digital pathology access and usage in the UK: results from a national survey on behalf of the National Cancer Research Institute's CM‐Path initiative
  publication-title: J Clin Pathol
– volume: 5
  start-page: 91
  year: 2019
  end-page: 99
  article-title: Quality assurance guidance for scoring and reporting for pathologists and laboratories undertaking clinical trial work
  publication-title: J Pathol Clin Res
– volume: 10: 2
  year: 2019
  article-title: New European Union regulations related to whole slide image scanners and image analysis software
  publication-title: J Pathol Inf
– volume: 7
  year: 2017
  article-title: Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images
  publication-title: Sci Rep
– volume: 9
  start-page: 5217
  year: 2018
  article-title: Why rankings of biomedical image analysis competitions should be interpreted with care
  publication-title: Nat Commun
– volume: 18
  start-page: 1276
  year: 2010
  end-page: 1288
  article-title: A standardized framework for the validation and verification of clinical molecular genetic tests
  publication-title: Eur J Hum Genet
– volume: 8
  start-page: 3395
  year: 2018
  article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer
  publication-title: Sci Rep
– volume: 40
  start-page: 17
  year: 2018
  end-page: 23
  article-title: Validation of digital pathology for primary histopathological diagnosis of routine, inflammatory dermatopathology cases
  publication-title: Am J Dermatopathol
– volume: 16
  start-page: 34
  year: 2018
  end-page: 42
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput Struct Biotechol J
– volume: 8
  year: 2018
  article-title: Novel digital signatures of tissue phenotypes for predicting distant metastasis in colorectal cancer
  publication-title: Sci Rep
– volume: 49
  start-page: 1965
  year: 2011
  end-page: 1973
  article-title: Regulation of diagnostics (IVDs) for use in clinical diagnostic laboratories: towards the light or dark in clinical laboratory testing?
  publication-title: Clin Chem Lab Med
– volume: 68
  start-page: 1063
  year: 2016
  end-page: 1072
  article-title: Validation of digital pathology imaging for primary histopathological diagnosis
  publication-title: Histopathology
– ident: e_1_2_12_25_1
  doi: 10.1038/s41467-018-07619-7
– ident: e_1_2_12_13_1
– volume: 10
  year: 2019
  ident: e_1_2_12_27_1
  article-title: New European Union regulations related to whole slide image scanners and image analysis software
  publication-title: J Pathol Inf
– ident: e_1_2_12_2_1
– ident: e_1_2_12_3_1
  doi: 10.1038/s41598-018-21758-3
– ident: e_1_2_12_19_1
  doi: 10.1016/j.csbj.2018.01.001
– ident: e_1_2_12_16_1
– ident: e_1_2_12_21_1
  doi: 10.1038/s41598-017-16516-w
– ident: e_1_2_12_11_1
  doi: 10.1136/jclinpath-2017-204808
– ident: e_1_2_12_15_1
– ident: e_1_2_12_32_1
  doi: 10.1515/CCLM.2011.690
– ident: e_1_2_12_5_1
– ident: e_1_2_12_24_1
  doi: 10.1002/cjp2.121
– ident: e_1_2_12_9_1
  doi: 10.1097/DAD.0000000000000888
– ident: e_1_2_12_12_1
– ident: e_1_2_12_20_1
– ident: e_1_2_12_34_1
– ident: e_1_2_12_8_1
  doi: 10.4103/jpi.jpi_11_17
– ident: e_1_2_12_10_1
  doi: 10.1111/his.12879
– ident: e_1_2_12_6_1
– ident: e_1_2_12_26_1
– ident: e_1_2_12_4_1
– ident: e_1_2_12_29_1
– ident: e_1_2_12_7_1
– ident: e_1_2_12_31_1
  doi: 10.2217/bmm-2016-0233
– ident: e_1_2_12_14_1
– ident: e_1_2_12_17_1
– ident: e_1_2_12_18_1
  doi: 10.1111/his.12993
– ident: e_1_2_12_23_1
  doi: 10.1038/ejhg.2010.101
– ident: e_1_2_12_30_1
– ident: e_1_2_12_28_1
– ident: e_1_2_12_33_1
– ident: e_1_2_12_22_1
  doi: 10.1038/s41598-018-31799-3
– reference: 31465119 - J Pathol. 2020 Jan;250(1):7-8. doi: 10.1002/path.5343.
SSID ssj0009955
Score 2.6418939
SecondaryResourceType review_article
Snippet The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms analysis
artificial
Artificial intelligence
Artificial Intelligence - standards
Artificial Intelligence - trends
Clinical medicine
Computer programs
Diagnosis, Computer-Assisted - standards
Diagnosis, Computer-Assisted - trends
Diffusion of Innovation
digital
evidence‐based
Forecasting
Histopathology
Humans
Image Interpretation, Computer-Assisted - standards
Image processing
intelligence
Learning algorithms
Pathology
Pathology - standards
Pathology - trends
Predictive Value of Tests
Regulatory approval
Reproducibility of Results
Workflow
Title Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.5310
https://www.ncbi.nlm.nih.gov/pubmed/31144302
https://www.proquest.com/docview/2296983514
https://www.proquest.com/docview/2232474888
Volume 249
WOSCitedRecordID wos000476045900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-9896
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009955
  issn: 0022-3417
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK-LF96M-ShQPXtam-2g2eipq8aAiolDwsOS1UtBt6bb-fif7UlFBEPaQJbObbDKTmUl2vgE46voi0FJwh0sZOj6n2hGxrx0LpR53vZhLT2TJJtjtbTgY8LsanJWxMDk-RLXhZiUjW6-tgAuZtj9AQ23G3hPkIPTXGy7ybVCHxsV9__H6A3OXB0EFFu53WAksRN129fBXdfTNxvxqsmY6p7_8r96uwFJhapJezhurUDPJGizcFIfp6_Bka3IACTL8hMyJN0QPn202EWJfmG28nxJBJiOhX8WYTEdYRIZNDJmlGXkZX0nKoKsNeOxfPpxfOUWuBUf5NppcBGEYGDQGBYsNVVRp4aHrp3ApZL7x8NKaoTajKvYlU-hEeTwwsenGUhubI2YT6skoMdtAmDLo8xmjJKo-l0qpOyqkrmKaSs1l3ITjcsgjVQCR23wYL1EOoexG9tsiO1hNOKxIxzn6xk9Ee-W8RYUAppHr8i4PbZhCEw6qahQdex4iEjOaWRq0JhmuYGETtvL5rlrx0E_0PepiZ7Np_b356K73cGULO38n3YVFNLx4_lPgHtSnk5nZh3n1Nh2mkxbMsUHYKrj5HT-y-HQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9ExfZFbWvt-dFuxQdfUtdkc5sVX0R7nHgeIicIPoT9ihy0ObkP_35n8qViBaGQhw07yW52Z3ZmdjO_AdhtCx07o1WgjEkCobgLdCZcQFDqWTvKlIl0kWxC9vvJzY26nIOjOhamxIdoNtxIMor1mgScNqT3n1BDKWXvL2QhdNgXBLIR8vfC6VXnuvcEuqviuEELFweyRhbi4X7z8Et99MrIfGmzFkqns_J_3V2F5crYZMcld3yCOZ9_hqWL6jj9C9xSTQkhwYbPsDnxhrnhHeUTYfTCYuv9kGk2Hmn3V9-z6QiLyLK5Z7NJQV5HWLI67GoNrju_ByfdoMq2EFhB8eQ6TpLYozmoZea55dbpCJ0_i4uhFD7CyzmJ-ozbTBhp0Y2KVOwz386M85Ql5ivM56PcfwMmrUevz3trUPmF3Bh3YBMeWum4ccpkLdirxzy1FRQ5ZcT4k5YgymFK35bSYLVgpyG9L_E3_kW0VU9cWongJA1D1VYJBSq04GdTjcJDJyI696MZ0aA9KXENS1qwXk5400qEnqKIeIidLeb17ebTy-NBlwob7yf9AR-6g4te2jvrn2_CRzTDVPmL4BbMT8czvw2L9mE6nIy_V0z9CD8L-3w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_kFOlLq7Wt12pNpQ--bC_uZi-b4otUD0v1OERB6MOSz3Jg94778O93Zr9UaqFQ2Icsmd1kk5nMTLLzG4DPfaFTZ7SKlDFZJBR3kQ7CRQSlHvpJUCbRZbIJORxmNzdqtAJHTSxMhQ_RbriRZJTrNQm4n7rQe0ANpZS9X5CF0GFfFZREpgOrJ5eD6_MH0F2Vpi1auDiUDbIQj3vtw0_10R9G5lObtVQ6g1f_190NeFkbm-y44o5NWPHFa1i_qI_Tt-An1VQQEmz8CJsTb5gb_6J8IoxeWG69f2WazSba_dZTtphgEVm28Gw5L8mbCEvWhF29gevB6dW3s6jOthBZQfHkOs2y1KM5qGXw3HLrdILOn8XFUAqf4OWcRH3GbRBGWnSjEpX64PvBOE9ZYt5Cp5gUfhuYtB69Pu-tQeUXc2Pcoc14bKXjxikTunDQjHluayhyyohxm1cgynFO35bTYHVhvyWdVvgbzxHtNBOX1yI4z-NY9VVGgQpd-NRWo_DQiYgu_GRJNGhPSlzDsi68qya8bSVBT1EkPMbOlvP69-bz0fHVGRXe_zvpHqyPTgb5-ffhjw_wAq0wVf0huAOdxWzpd2HN3i3G89nHmqfvAdHi-vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+in+digital+pathology%3A+a+roadmap+to+routine+use+in+clinical+practice&rft.jtitle=The+Journal+of+pathology&rft.au=Colling%2C+Richard&rft.au=Pitman%2C+Helen&rft.au=Oien%2C+Karin&rft.au=Rajpoot%2C+Nasir&rft.date=2019-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=249&rft.issue=2&rft.spage=143&rft.epage=150&rft_id=info:doi/10.1002%2Fpath.5310&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon