Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling
Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introdu...
Saved in:
| Published in: | Results in engineering Vol. 25; p. 104079 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.03.2025
Elsevier |
| Subjects: | |
| ISSN: | 2590-1230, 2590-1230 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging.
•A novel hybrid technique is developed using only precipitation and evapotranspiration to predict discharge.•Integrating uncertainty insights from stochastic models into machine learning enhances discharge predictions.•The Sto.HyMoLAP-WGRU hybrid model demonstrates the best predictive performance, particularly for low and high discharges.•The performance of the hybridization technique depends on the range of uncertainties considered. |
|---|---|
| AbstractList | Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging.
•A novel hybrid technique is developed using only precipitation and evapotranspiration to predict discharge.•Integrating uncertainty insights from stochastic models into machine learning enhances discharge predictions.•The Sto.HyMoLAP-WGRU hybrid model demonstrates the best predictive performance, particularly for low and high discharges.•The performance of the hybridization technique depends on the range of uncertainties considered. Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and offer better interpretability than standalone machine learning models. However, the commonly used models are deterministic. This study introduces an innovative extension to stochastic hydrological models, offering a novel combination that has not been previously explored. The proposed approach predicts discharge by integrating the simulated statistical properties of daily discharge probability distributions, derived from a stochastic rainfall-runoff model, into machine learning frameworks. This integration allows the machine learning models to incorporate insights from the uncertainties in discharge, thereby enhancing predictive accuracy of discharge simulations. The hybridization presented combines the physically-based stochastic HyMoLAP (Sto. HyMoLAP) model with machine learning techniques, including Wavelet-based eXtreme Gradient Boosting (WXGBoost) and Wavelet-based Gated Recurrent Unit (WGRU). Evaluated on the Ouémé at Bonou river basin, Benin, the Sto. HyMoLAP-WGRU model shows the best predictive performance, especially for low and high discharges. It achieves an overall Nash-Sutcliffe Efficiency (NSE) of 0.896, which is 7.30% higher than the NSE of HyMoLAP, and 29.67% and 259.71% higher than those of the standalone machine learning models. The Combined Accuracy (CA) is 38.11, reflecting reductions of 19.81%, 42.30%, and 62.41% compared to the standalone models. The analyses show that the performance of hybrid models depends on the simulated discharge distribution properties used as input. They suggest that the hybridization approach could be particularly beneficial for runoff simulations in catchments subject to significant random fluctuations where point discharge simulation is challenging. |
| ArticleNumber | 104079 |
| Author | Johnson, Olatunji Ronoh, Erick K. Moore, Stephen E. Houénafa, Sianou Ezéckiel |
| Author_xml | – sequence: 1 givenname: Sianou Ezéckiel orcidid: 0009-0003-5156-0374 surname: Houénafa fullname: Houénafa, Sianou Ezéckiel email: ezeckiel.sianou@students.jkuat.ac.ke organization: Department of Mathematics, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya – sequence: 2 givenname: Olatunji surname: Johnson fullname: Johnson, Olatunji organization: Department of Mathematics, University of Manchester, Manchester, United Kingdom – sequence: 3 givenname: Erick K. surname: Ronoh fullname: Ronoh, Erick K. organization: Department of Agricultural and Biosystems Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya – sequence: 4 givenname: Stephen E. surname: Moore fullname: Moore, Stephen E. organization: Department of Mathematics, University of Cape Coast, Cape Coast, Ghana |
| BookMark | eNqFkV9LwzAUxYMoOHXfwId8gc6kTdbWB0GG_0DwRZ9DenO7ZbTJSOpgfnqzVUR80KeEc3N-4dxzRo6dd0jIJWczzvj8aj0L1qFbznKWyyQJVtZHZJLLmmU8L9jxj_spmca4ZozlVfIW5YTEx10TrLEferDeUd_SOHhY6ThYoKudCb7zSwu6o7032EWqnaG9hlX6k3aog7NuSXscVt5E2vpAbb8JfrtXg7au1V2XhXfn23YkpMEFOUlyxOnXeU7e7u9eF4_Z88vD0-L2OQPBqyFrapPLSvM54xJZAYYxw0yBMOeABrluuDZFMzeixrwWaSgBWi2x4aKE9PKcPI1c4_VabYLtddgpr606CD4slQ4pZ4cKeYNlAZzLBkUlRYUSRLnXqqIwVZ5YYmRB8DEGbL95nKl9D2qtxh7Uvgc19pBs179sYIfDqoe0ne4_881oTnvHrcWgIlh0KbwNCENKYf8GfAKfFat_ |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_104928 crossref_primary_10_1016_j_rineng_2025_106116 crossref_primary_10_1016_j_rineng_2025_107228 crossref_primary_10_70322_hee_2025_10006 crossref_primary_10_1016_j_rineng_2025_107381 crossref_primary_10_1016_j_rineng_2025_104545 crossref_primary_10_1016_j_rineng_2025_104956 crossref_primary_10_1016_j_rineng_2025_106250 |
| Cites_doi | 10.1016/S0022-1694(03)00225-7 10.1007/s00477-018-1560-y 10.1155/2022/1860460 10.1007/s10661-023-11331-5 10.1007/s11269-021-02937-w 10.1016/j.rineng.2024.103319 10.3390/w15081556 10.1007/s11069-020-04438-2 10.1007/s00703-017-0546-5 10.2166/nh.2024.016 10.2166/nh.2017.076 10.1016/j.rineng.2024.102017 10.1029/2020WR028091 10.1080/02626667.2017.1330542 10.1016/j.rineng.2024.103421 10.13031/trans.58.10715 10.1002/for.3028 10.1016/j.jhydrol.2019.124371 10.1016/j.jhydrol.2009.12.003 10.1016/j.jhydrol.2021.126433 10.1007/s10661-022-10696-3 10.1016/j.rineng.2024.102044 10.1016/j.rineng.2024.102504 10.3390/jmse11020259 10.1061/(ASCE)1084-0699(2006)11:6(597) 10.1016/j.rineng.2024.101920 10.1109/ACCESS.2021.3077703 10.1016/j.rineng.2024.102215 10.1016/j.rineng.2024.103086 10.1038/s41598-022-07693-4 10.2166/wst.2022.400 10.1016/j.iot.2022.100615 10.1029/94JD00483 10.1080/00031305.1998.10480559 10.1016/j.envsoft.2023.105831 10.1080/02626667.2019.1686639 10.1016/j.rineng.2024.101828 10.1016/j.rineng.2023.101024 10.1029/2000JD900719 10.1016/j.advwatres.2021.104017 10.1016/j.compag.2021.106541 10.3390/w10111655 10.1016/j.jhydrol.2014.03.057 10.5194/hess-26-3377-2022 10.3390/hydrology4040047 10.1016/j.jhydrol.2020.124901 10.1016/j.scitotenv.2024.171684 10.2166/hydro.2011.044 10.1016/0022-1694(86)90114-9 10.1016/j.rineng.2024.102682 10.1016/j.atmosres.2012.11.003 10.1007/s00477-023-02435-y 10.1016/j.pce.2006.03.020 10.1016/j.rineng.2024.103048 10.1109/18.57199 10.5194/hess-22-6005-2018 10.3390/hydrology9120226 10.3390/app12042126 10.2166/ws.2018.189 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.rineng.2025.104079 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2590-1230 |
| ExternalDocumentID | oai_doaj_org_article_e1be73c115be48548e5c47be73833d82 10_1016_j_rineng_2025_104079 S2590123025001677 |
| GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c418t-b9d258a16015e03cd00d0d3ec61cede1ab1ad3b6d49e2940d05ccfa5eb147c0d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414037900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2590-1230 |
| IngestDate | Fri Oct 03 12:45:00 EDT 2025 Thu Nov 13 04:30:40 EST 2025 Tue Nov 18 22:30:57 EST 2025 Sat Jul 05 17:10:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | HyMoLAP Uncertainties Hybrid models Stochastic hydrological model Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-b9d258a16015e03cd00d0d3ec61cede1ab1ad3b6d49e2940d05ccfa5eb147c0d3 |
| ORCID | 0009-0003-5156-0374 |
| OpenAccessLink | https://doaj.org/article/e1be73c115be48548e5c47be73833d82 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e1be73c115be48548e5c47be73833d82 crossref_primary_10_1016_j_rineng_2025_104079 crossref_citationtrail_10_1016_j_rineng_2025_104079 elsevier_sciencedirect_doi_10_1016_j_rineng_2025_104079 |
| PublicationCentury | 2000 |
| PublicationDate | March 2025 2025-03-00 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Results in engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Biao (br0180) 2017; 4 Liang, Lettenmaier, Wood, Burges (br0100) 1994; 99 Adamowski, Chan, Prasher, Sharda (br0250) 2012; 14 Moriasi, Gitau, Pai, Daggupati (br0770) 2015; 58 Adnan, Mostafa, Islam, Kisi, Kuriqi, Heddam (br0390) 2021; 191 McCuen, Knight, Cutter (br0520) 2006; 11 Sang (br0540) 2013; 122 Kedam, Tiwari, Kumar, Khedher, Salem (br0290) 2024; 22 Haugh (br0510) 2004 Kapoor, Pathiraja, Marshall, Chandra (br0050) 2023; 169 Szczepanek (br0630) 2022; 9 Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (br0710) 2014 Barber, Lamontagne, Vogel (br0780) 2020; 65 Kheimi, Almadani, Zounemat-Kermani (br0680) 2023 Noether (br0160) 1983 Tian, Xu, Yang, Wang, Zhu (br0470) 2018; 10 Le, Nguyen, Jung, Yeon, Lee (br0700) 2021; 9 Zhou, Kang (br0690) 2023; 15 Hintze, Nelson (br0810) 1998; 52 Lange, Sippel (br0460) 2020 Rios, Seghier, Plevris, Dai (br0610) 2024; 23 Saaidi, Bichri, Abderafi (br0660) 2023; 18 Nourani, Baghanam, Adamowski, Kisi (br0550) 2014; 514 Rahimzad, Moghaddam Nia, Zolfonoon, Soltani, Danandeh Mehr, Kwon (br0330) 2021; 35 Frame, Kratzert, Klotz (br0670) 2022; 26 Ahmetoglu, Das (br0590) 2022; 20 Afouda, Lawin, Lebel, Peugeot, Seguis (br0130) 2005 G.A. Corzo Perez, Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques, 2009. Abbott, Bathurst, Cunge, O'Connell, Rasmussen (br0110) 1986; 87 Houénafa, Ronoh, Johnson, Moore (br0220) 2024 Perera, Coralage, Ekanayake, Alawatugoda, Meddage (br0080) 2024; 21 J. Seibert, Hbv light version 2. User's manual, Stockholm University, 2005. Rahimzad, Moghaddam Nia, Zolfonoon, Soltani, Danandeh Mehr, Kwon (br0260) 2021; 35 Cannas, Fanni, See, Sias (br0560) 2006; 31 Taylor (br0820) 2001; 106 Okkan, Ersoy, Kumanlioglu, Fistikoglu (br0490) 2021; 598 Tayyab, Zhou, Dong, Ahmad, Sun (br0420) 2019; 131 Hodson (br0790) 2022 Afouda, Alamou (br0140) 2010; 13 Dayal, Bonthu, Saripalle, Mohan (br0730) 2024; 21 Yuan, Chen, Lei, Yuan, Muhammad Adnan (br0350) 2018; 32 Sezen, Šraj (br0040) 2024; 926 Chen, Guestrin (br0580) 2016 Kisi, Azamathulla, Cevat, Kulls, Kuhdaragh, Fuladipanah (br0300) 2024; 22 Adnan, Mostafa, Dai, Heddam, Kuriqi, Kisi (br0380) 2023; 17 Lee, Xia (br0650) 2024; 24 Wegayehu, Muluneh (br0340) 2022; 2022 Lakshmi, Apaza, Alkhayyat, Marhoon, Alameri (br0430) 2022; 86 G.S. Nearing, C.S. Pelissier, F. Kratzert, D. Klotz, H.V. Gupta, J.M. Frame, A.K. Sampson, Physically informed machine learning for hydrological modeling under climate nonstationarity, 2019. Shrestha (br0070) 2010 Alamou (br0150) 2011 Tiwari, Kumar, Goyal, Khedher, Salem (br0440) 2024; 23 Adnan, Petroselli, Heddam, Santos, Kisi (br0240) 2021; 105 Gaba, Alamou, Afouda, Diekkrüger (br0190) 2017; 62 Kumar, Unal, Bhagat, Tiyasha (br0060) 2024; 22 Sezen, Partal (br0800) 2019; 19 Adnan, Liang, Heddam, Zounemat-Kermani, Kisi, Li (br0760) 2020; 586 Dalkilic, Kumar, Samui, Dixon, Yesilyurt, Katipoğlu (br0270) 2023; 195 Eray, Mert, Kisi (br0750) 2018; 49 Neitsch, Arnold, Kiniry, Williams (br0120) 2011 Harrou, Dairi, Dorbane, Sun (br0530) 2024; 23 Kaggle (br0620) 2021 Essam, Huang, Ng, Birima, Ahmed, El-Shafie (br0310) 2022; 12 Parisouj, Jun, Bateni, Heggy, Band (br0740) 2024; 24 Hauswirth, Bierkens, Beijk, Wanders (br0230) 2021; 155 Perrin, Michel, Andréassian (br0200) 2003; 279 Riyadi, Olutoki, Hermana, Latif, Yogi, Kadir (br0600) 2024; 24 Hochreiter (br0720) 1997 Kratzert, Klotz, Brenner, Schulz, Herrnegger (br0010) 2018; 22 Nearing, Kratzert, Sampson, Pelissier, Klotz, Frame, Prieto, Gupta (br0030) 2021; 57 Talukdar, Pal, Shahfahad, Naikoo, Parvez, Rahman (br0320) 2023; 195 Zhou, Kang (br0280) 2023; 15 Dang, Zhu (br0500) 2024 Afouda, Lawin, Lebel (br0170) 2004 Amjad, Ahmad, Ahmad, Wróblewski, Kamiński, Amjad (br0640) 2022; 12 Kourgialas, Karatzas, Nikolaidis (br0830) 2010; 381 Ni, Wang, Wu, Wang, Tao, Zhang, Liu (br0410) 2020; 586 Asadi, Jimeno-Sáez, López-Ballesteros, Senent-Aparicio (br0090) 2024; 24 Adnan, Mostafa, Dai, Heddam, Masood, Kisi (br0360) 2023; 37 Adnan, Mostafa, Dai, Mansouri, Kisi, Zounemat-Kermani (br0370) 2024; 43 Ikram, Mostafa, Chen, Parmar, Kisi, Zounemat-Kermani (br0400) 2023; 11 Yifru, Lim, Bae, Park, Lee (br0480) 2024; 55 Daubechies (br0570) 1990; 36 Adnan (10.1016/j.rineng.2025.104079_br0370) 2024; 43 Kheimi (10.1016/j.rineng.2025.104079_br0680) 2023 Moriasi (10.1016/j.rineng.2025.104079_br0770) 2015; 58 Zhou (10.1016/j.rineng.2025.104079_br0280) 2023; 15 Hintze (10.1016/j.rineng.2025.104079_br0810) 1998; 52 Ahmetoglu (10.1016/j.rineng.2025.104079_br0590) 2022; 20 Afouda (10.1016/j.rineng.2025.104079_br0130) 2005 Dang (10.1016/j.rineng.2025.104079_br0500) Kourgialas (10.1016/j.rineng.2025.104079_br0830) 2010; 381 Adnan (10.1016/j.rineng.2025.104079_br0390) 2021; 191 Cannas (10.1016/j.rineng.2025.104079_br0560) 2006; 31 Riyadi (10.1016/j.rineng.2025.104079_br0600) 2024; 24 Harrou (10.1016/j.rineng.2025.104079_br0530) 2024; 23 Amjad (10.1016/j.rineng.2025.104079_br0640) 2022; 12 Alamou (10.1016/j.rineng.2025.104079_br0150) 2011 Sezen (10.1016/j.rineng.2025.104079_br0040) 2024; 926 Parisouj (10.1016/j.rineng.2025.104079_br0740) 2024; 24 Kedam (10.1016/j.rineng.2025.104079_br0290) 2024; 22 Szczepanek (10.1016/j.rineng.2025.104079_br0630) 2022; 9 Daubechies (10.1016/j.rineng.2025.104079_br0570) 1990; 36 Houénafa (10.1016/j.rineng.2025.104079_br0220) Sang (10.1016/j.rineng.2025.104079_br0540) 2013; 122 Taylor (10.1016/j.rineng.2025.104079_br0820) 2001; 106 Talukdar (10.1016/j.rineng.2025.104079_br0320) 2023; 195 Hochreiter (10.1016/j.rineng.2025.104079_br0720) 1997 Asadi (10.1016/j.rineng.2025.104079_br0090) 2024; 24 Abbott (10.1016/j.rineng.2025.104079_br0110) 1986; 87 Shrestha (10.1016/j.rineng.2025.104079_br0070) 2010 Le (10.1016/j.rineng.2025.104079_br0700) 2021; 9 Barber (10.1016/j.rineng.2025.104079_br0780) 2020; 65 Ikram (10.1016/j.rineng.2025.104079_br0400) 2023; 11 Haugh (10.1016/j.rineng.2025.104079_br0510) 2004 Rios (10.1016/j.rineng.2025.104079_br0610) 2024; 23 Rahimzad (10.1016/j.rineng.2025.104079_br0260) 2021; 35 Perera (10.1016/j.rineng.2025.104079_br0080) 2024; 21 Kaggle (10.1016/j.rineng.2025.104079_br0620) Eray (10.1016/j.rineng.2025.104079_br0750) 2018; 49 Chen (10.1016/j.rineng.2025.104079_br0580) 2016 Dalkilic (10.1016/j.rineng.2025.104079_br0270) 2023; 195 Yifru (10.1016/j.rineng.2025.104079_br0480) 2024; 55 McCuen (10.1016/j.rineng.2025.104079_br0520) 2006; 11 Tayyab (10.1016/j.rineng.2025.104079_br0420) 2019; 131 Cho (10.1016/j.rineng.2025.104079_br0710) Sezen (10.1016/j.rineng.2025.104079_br0800) 2019; 19 Gaba (10.1016/j.rineng.2025.104079_br0190) 2017; 62 Adnan (10.1016/j.rineng.2025.104079_br0240) 2021; 105 Adnan (10.1016/j.rineng.2025.104079_br0360) 2023; 37 Ni (10.1016/j.rineng.2025.104079_br0410) 2020; 586 Lakshmi (10.1016/j.rineng.2025.104079_br0430) 2022; 86 10.1016/j.rineng.2025.104079_br0450 Adamowski (10.1016/j.rineng.2025.104079_br0250) 2012; 14 10.1016/j.rineng.2025.104079_br0210 Noether (10.1016/j.rineng.2025.104079_br0160) 1983 Neitsch (10.1016/j.rineng.2025.104079_br0120) 2011 Kratzert (10.1016/j.rineng.2025.104079_br0010) 2018; 22 Saaidi (10.1016/j.rineng.2025.104079_br0660) 2023; 18 Lee (10.1016/j.rineng.2025.104079_br0650) 2024; 24 Dayal (10.1016/j.rineng.2025.104079_br0730) 2024; 21 Hodson (10.1016/j.rineng.2025.104079_br0790) 2022 Rahimzad (10.1016/j.rineng.2025.104079_br0330) 2021; 35 Nearing (10.1016/j.rineng.2025.104079_br0030) 2021; 57 Liang (10.1016/j.rineng.2025.104079_br0100) 1994; 99 Zhou (10.1016/j.rineng.2025.104079_br0690) 2023; 15 Tiwari (10.1016/j.rineng.2025.104079_br0440) 2024; 23 Wegayehu (10.1016/j.rineng.2025.104079_br0340) 2022; 2022 10.1016/j.rineng.2025.104079_br0020 Afouda (10.1016/j.rineng.2025.104079_br0140) 2010; 13 Biao (10.1016/j.rineng.2025.104079_br0180) 2017; 4 Hauswirth (10.1016/j.rineng.2025.104079_br0230) 2021; 155 Afouda (10.1016/j.rineng.2025.104079_br0170) 2004 Adnan (10.1016/j.rineng.2025.104079_br0380) 2023; 17 Frame (10.1016/j.rineng.2025.104079_br0670) 2022; 26 Adnan (10.1016/j.rineng.2025.104079_br0760) 2020; 586 Lange (10.1016/j.rineng.2025.104079_br0460) 2020 Yuan (10.1016/j.rineng.2025.104079_br0350) 2018; 32 Kisi (10.1016/j.rineng.2025.104079_br0300) 2024; 22 Tian (10.1016/j.rineng.2025.104079_br0470) 2018; 10 Nourani (10.1016/j.rineng.2025.104079_br0550) 2014; 514 Essam (10.1016/j.rineng.2025.104079_br0310) 2022; 12 Kapoor (10.1016/j.rineng.2025.104079_br0050) 2023; 169 Okkan (10.1016/j.rineng.2025.104079_br0490) 2021; 598 Kumar (10.1016/j.rineng.2025.104079_br0060) 2024; 22 Perrin (10.1016/j.rineng.2025.104079_br0200) 2003; 279 |
| References_xml | – volume: 191 year: 2021 ident: br0390 article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms publication-title: Comput. Electron. Agric. – volume: 87 start-page: 45 year: 1986 end-page: 59 ident: br0110 article-title: An introduction to the European hydrological system—systeme hydrologique europeen, “she”, 1: history and philosophy of a physically-based, distributed modelling system publication-title: J. Hydrol. – reference: G.S. Nearing, C.S. Pelissier, F. Kratzert, D. Klotz, H.V. Gupta, J.M. Frame, A.K. Sampson, Physically informed machine learning for hydrological modeling under climate nonstationarity, 2019. – year: 2011 ident: br0150 article-title: Application du Principe de Moindre Action à la Modélisation Pluie-débit – volume: 9 start-page: 226 year: 2022 ident: br0630 article-title: Daily streamflow forecasting in mountainous catchment using xgboost, lightgbm and catboost publication-title: Hydrology – volume: 26 start-page: 3377 year: 2022 end-page: 3392 ident: br0670 article-title: Deep learning rainfall–runoff predictions of extreme events publication-title: Hydrol. Earth Syst. Sci. – start-page: 1 year: 2023 end-page: 15 ident: br0680 article-title: Stochastic (s [arima]), shallow (narnet, nar-gmdh, os-elm), and deep learning (lstm, stacked-lstm, cnn-gru) models, application to river flow forecasting publication-title: Acta Geophys. – volume: 169 year: 2023 ident: br0050 article-title: Deepgr4j: a deep learning hybridization approach for conceptual rainfall-runoff modelling publication-title: Environ. Model. Softw. – volume: 24 year: 2024 ident: br0740 article-title: Daily runoff forecasting using novel optimized machine learning methods publication-title: Results Eng. – volume: 21 year: 2024 ident: br0080 article-title: A new frontier in streamflow modeling in ungauged basins with sparse data: a modified generative adversarial network with explainable ai publication-title: Results Eng. – volume: 105 start-page: 2987 year: 2021 end-page: 3011 ident: br0240 article-title: Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach publication-title: Nat. Hazards – volume: 155 year: 2021 ident: br0230 article-title: The potential of data-driven approaches for quantifying hydrological extremes publication-title: Adv. Water Resour. – volume: 36 start-page: 961 year: 1990 end-page: 1005 ident: br0570 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Trans. Inf. Theory – volume: 86 start-page: 3205 year: 2022 end-page: 3222 ident: br0430 article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling publication-title: Water Sci. Technol. – volume: 21 year: 2024 ident: br0730 article-title: Deep learning for multi-horizon water levelforecasting in krs reservoir, India publication-title: Results Eng. – volume: 20 year: 2022 ident: br0590 article-title: A comprehensive review on detection of cyber-attacks: data sets, methods, challenges, and future research directions publication-title: Internet of Things – volume: 35 start-page: 4167 year: 2021 end-page: 4187 ident: br0260 article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting publication-title: Water Resour. Manag. – year: 2021 ident: br0620 article-title: Your machine learning and data science community – volume: 279 start-page: 275 year: 2003 end-page: 289 ident: br0200 article-title: Improvement of a parsimonious model for streamflow simulation publication-title: J. Hydrol. – year: 2024 ident: br0220 article-title: Lévy-induced stochastic differential equation models in rainfall-runoff systems for assessing extreme hydrological event risks – volume: 52 start-page: 181 year: 1998 end-page: 184 ident: br0810 article-title: Violin plots: a box plot-density trace synergism publication-title: Am. Stat. – volume: 926 year: 2024 ident: br0040 article-title: Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models publication-title: Sci. Total Environ. – volume: 32 start-page: 2199 year: 2018 end-page: 2212 ident: br0350 article-title: Monthly runoff forecasting based on lstm–alo model publication-title: Stoch. Environ. Res. Risk Assess. – volume: 586 year: 2020 ident: br0410 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. – volume: 122 start-page: 8 year: 2013 end-page: 15 ident: br0540 article-title: A review on the applications of wavelet transform in hydrology time series analysis publication-title: Atmos. Res. – volume: 12 start-page: 3883 year: 2022 ident: br0310 article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms publication-title: Sci. Rep. – volume: 14 start-page: 731 year: 2012 end-page: 744 ident: br0250 article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data publication-title: J. Hydroinform. – volume: 11 start-page: 597 year: 2006 end-page: 602 ident: br0520 article-title: Evaluation of the Nash–sutcliffe efficiency index publication-title: J. Hydrol. Eng. – year: 2011 ident: br0120 article-title: Soil and water assessment tool theoretical documentation version 2009 – volume: 37 start-page: 3063 year: 2023 end-page: 3083 ident: br0360 article-title: Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm publication-title: Stoch. Environ. Res. Risk Assess. – volume: 17 year: 2023 ident: br0380 article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 22 start-page: 6005 year: 2018 end-page: 6022 ident: br0010 article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks publication-title: Hydrol. Earth Syst. Sci. – volume: 57 year: 2021 ident: br0030 article-title: What role does hydrological science play in the age of machine learning? publication-title: Water Resour. Res. – volume: 24 year: 2024 ident: br0090 article-title: Comparison and integration of physical and interpretable ai-driven models for rainfall-runoff simulation publication-title: Results Eng. – year: 2004 ident: br0510 article-title: Simulating stochastic differential equations publication-title: Monte Carlo Simulation: Ieor E 4703 – volume: 23 year: 2024 ident: br0440 article-title: Comparative analysis of data driven rainfall-runoff models in the kolar river basin publication-title: Results Eng. – year: 2024 ident: br0500 article-title: Euler-Maruyama schemes for stochastic differential equations driven by stable Lévy processes with i.i.d. stable components – year: 2014 ident: br0710 article-title: Learning phrase representations using rnn encoder-decoder for statistical machine translation – volume: 19 start-page: 1295 year: 2019 end-page: 1304 ident: br0800 article-title: The utilization of a gr4j model and wavelet-based artificial neural network for rainfall–runoff modelling publication-title: Water Supply – volume: 22 year: 2024 ident: br0300 article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship publication-title: Results Eng. – volume: 195 start-page: 153 year: 2023 ident: br0320 article-title: Trend analysis and forecasting of streamflow using random forest in the Punarbhaba River basin publication-title: Environ. Monit. Assess. – volume: 43 start-page: 159 year: 2024 end-page: 181 ident: br0370 article-title: Comparison of improved relevance vector machines for streamflow predictions publication-title: J. Forecast. – volume: 195 start-page: 705 year: 2023 ident: br0270 article-title: Application of deep learning approaches to predict monthly stream flows publication-title: Environ. Monit. Assess. – volume: 2022 year: 2022 ident: br0340 article-title: Short-term daily univariate streamflow forecasting using deep learning models publication-title: Adv. Meteorol. – volume: 586 year: 2020 ident: br0760 article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs publication-title: J. Hydrol. – volume: 22 year: 2024 ident: br0290 article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy publication-title: Results Eng. – volume: 24 year: 2024 ident: br0650 article-title: Analyzing the dynamics between crude oil spot prices and futures prices by maturity terms: deep learning approaches to futures-based forecasting publication-title: Results Eng. – volume: 10 start-page: 1655 year: 2018 ident: br0470 article-title: Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting publication-title: Water – volume: 65 start-page: 87 year: 2020 end-page: 101 ident: br0780 article-title: Improved estimators of correlation and r2 for skewed hydrologic data publication-title: Hydrol. Sci. J. – volume: 55 start-page: 498 year: 2024 end-page: 518 ident: br0480 article-title: A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling publication-title: Hydrol. Res. – volume: 24 year: 2024 ident: br0600 article-title: Machine learning prediction of permeability distribution in the x field Malay basin using elastic properties publication-title: Results Eng. – volume: 131 start-page: 115 year: 2019 end-page: 125 ident: br0420 article-title: Rainfall-runoff modeling at jinsha river basin by integrated neural network with discrete wavelet transform publication-title: Meteorol. Atmos. Phys. – volume: 35 start-page: 4167 year: 2021 end-page: 4187 ident: br0330 article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting publication-title: Water Resour. Manag. – year: 1997 ident: br0720 article-title: Long Short-Term Memory – volume: 62 start-page: 1499 year: 2017 end-page: 1516 ident: br0190 article-title: Improvement and comparative assessment of a hydrological modelling approach on 20 catchments of various sizes under different climate conditions publication-title: Hydrol. Sci. J. – year: 2010 ident: br0070 article-title: Uncertainty analysis in rainfall-runoff modelling-application of machine learning techniques – volume: 13 year: 2010 ident: br0140 article-title: Modèle hydrologique basé sur le principe de moindre action (modhypma) publication-title: Ann. Sci. Agron. – volume: 9 start-page: 71805 year: 2021 end-page: 71820 ident: br0700 article-title: Comparison of deep learning techniques for river streamflow forecasting publication-title: IEEE Access – volume: 58 start-page: 1763 year: 2015 end-page: 1785 ident: br0770 article-title: Hydrologic and water quality models: performance measures and evaluation criteria publication-title: Trans. ASABE – volume: 11 start-page: 259 year: 2023 ident: br0400 article-title: Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer publication-title: J. Mar. Sci. Eng. – volume: 31 start-page: 1164 year: 2006 end-page: 1171 ident: br0560 article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning publication-title: Phys. Chem. Earth Parts A/B/C – volume: 49 start-page: 1221 year: 2018 end-page: 1233 ident: br0750 article-title: Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation publication-title: Hydrol. Res. – start-page: 231 year: 1983 end-page: 239 ident: br0160 article-title: Invariante variationsprobleme publication-title: Gesammelte Abhandlungen-Collected Papers – start-page: 153 year: 2004 end-page: 169 ident: br0170 article-title: A stochastic streamflow model based on a minimum energy expenditure concept publication-title: Contemporary Problems in Mathematical Physics – volume: 12 start-page: 2126 year: 2022 ident: br0640 article-title: Prediction of pile bearing capacity using xgboost algorithm: modeling and performance evaluation publication-title: Appl. Sci. – start-page: 1 year: 2022 end-page: 10 ident: br0790 article-title: Root mean square error (rmse) or mean absolute error (mae): when to use them or not publication-title: Geosci. Model Dev. Discuss. – start-page: 129 year: 2005 end-page: 137 ident: br0130 article-title: Modèle de transformation pluie-débit basé sur le principe de moindre action publication-title: IAHS-AISH Publication – volume: 4 start-page: 47 year: 2017 ident: br0180 article-title: Assessing the impacts of climate change on river discharge dynamics in oueme river basin (Benin, West Africa) publication-title: Hydrology – start-page: 233 year: 2020 end-page: 257 ident: br0460 article-title: Machine learning applications in hydrology publication-title: Forest-Water Interactions – volume: 598 year: 2021 ident: br0490 article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling publication-title: J. Hydrol. – volume: 381 start-page: 308 year: 2010 end-page: 321 ident: br0830 article-title: An integrated framework for the hydrologic simulation of a complex geomorphological river basin publication-title: J. Hydrol. – volume: 99 start-page: 14415 year: 1994 end-page: 14428 ident: br0100 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res., Atmos. – volume: 15 start-page: 1556 year: 2023 ident: br0280 article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River publication-title: Water – reference: G.A. Corzo Perez, Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques, 2009. – volume: 22 year: 2024 ident: br0060 article-title: A data-driven approach to river discharge forecasting in the Himalayan region: insights from aglar and paligaad rivers publication-title: Results Eng. – volume: 106 start-page: 7183 year: 2001 end-page: 7192 ident: br0820 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res., Atmos. – reference: J. Seibert, Hbv light version 2. User's manual, Stockholm University, 2005. – volume: 23 year: 2024 ident: br0530 article-title: Enhancing wind power prediction with self-attentive variational autoencoders: a comparative study publication-title: Results Eng. – volume: 18 year: 2023 ident: br0660 article-title: Efficient machine learning model to predict dynamic viscosity in phosphoric acid production publication-title: Results Eng. – volume: 15 start-page: 1556 year: 2023 ident: br0690 article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River publication-title: Water – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: br0550 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydrol. – start-page: 785 year: 2016 end-page: 794 ident: br0580 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining – volume: 23 year: 2024 ident: br0610 article-title: Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables publication-title: Results Eng. – volume: 279 start-page: 275 year: 2003 ident: 10.1016/j.rineng.2025.104079_br0200 article-title: Improvement of a parsimonious model for streamflow simulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00225-7 – volume: 32 start-page: 2199 year: 2018 ident: 10.1016/j.rineng.2025.104079_br0350 article-title: Monthly runoff forecasting based on lstm–alo model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-018-1560-y – start-page: 1 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0680 article-title: Stochastic (s [arima]), shallow (narnet, nar-gmdh, os-elm), and deep learning (lstm, stacked-lstm, cnn-gru) models, application to river flow forecasting publication-title: Acta Geophys. – volume: 2022 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0340 article-title: Short-term daily univariate streamflow forecasting using deep learning models publication-title: Adv. Meteorol. doi: 10.1155/2022/1860460 – volume: 195 start-page: 705 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0270 article-title: Application of deep learning approaches to predict monthly stream flows publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11331-5 – start-page: 153 year: 2004 ident: 10.1016/j.rineng.2025.104079_br0170 article-title: A stochastic streamflow model based on a minimum energy expenditure concept – volume: 35 start-page: 4167 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0330 article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02937-w – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0740 article-title: Daily runoff forecasting using novel optimized machine learning methods publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103319 – start-page: 231 year: 1983 ident: 10.1016/j.rineng.2025.104079_br0160 article-title: Invariante variationsprobleme – ident: 10.1016/j.rineng.2025.104079_br0500 – ident: 10.1016/j.rineng.2025.104079_br0020 – volume: 15 start-page: 1556 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0280 article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River publication-title: Water doi: 10.3390/w15081556 – ident: 10.1016/j.rineng.2025.104079_br0450 – volume: 105 start-page: 2987 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0240 article-title: Comparison of different methodologies for rainfall–runoff modeling: machine learning vs conceptual approach publication-title: Nat. Hazards doi: 10.1007/s11069-020-04438-2 – volume: 131 start-page: 115 year: 2019 ident: 10.1016/j.rineng.2025.104079_br0420 article-title: Rainfall-runoff modeling at jinsha river basin by integrated neural network with discrete wavelet transform publication-title: Meteorol. Atmos. Phys. doi: 10.1007/s00703-017-0546-5 – volume: 55 start-page: 498 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0480 article-title: A hybrid deep learning approach for streamflow prediction utilizing watershed memory and process-based modeling publication-title: Hydrol. Res. doi: 10.2166/nh.2024.016 – year: 2004 ident: 10.1016/j.rineng.2025.104079_br0510 article-title: Simulating stochastic differential equations – volume: 49 start-page: 1221 year: 2018 ident: 10.1016/j.rineng.2025.104079_br0750 article-title: Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation publication-title: Hydrol. Res. doi: 10.2166/nh.2017.076 – volume: 22 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0300 article-title: Enhancing river flow predictions: comparative analysis of machine learning approaches in modeling stage-discharge relationship publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102017 – volume: 57 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0030 article-title: What role does hydrological science play in the age of machine learning? publication-title: Water Resour. Res. doi: 10.1029/2020WR028091 – volume: 62 start-page: 1499 year: 2017 ident: 10.1016/j.rineng.2025.104079_br0190 article-title: Improvement and comparative assessment of a hydrological modelling approach on 20 catchments of various sizes under different climate conditions publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2017.1330542 – start-page: 129 year: 2005 ident: 10.1016/j.rineng.2025.104079_br0130 article-title: Modèle de transformation pluie-débit basé sur le principe de moindre action – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0600 article-title: Machine learning prediction of permeability distribution in the x field Malay basin using elastic properties publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103421 – volume: 58 start-page: 1763 year: 2015 ident: 10.1016/j.rineng.2025.104079_br0770 article-title: Hydrologic and water quality models: performance measures and evaluation criteria publication-title: Trans. ASABE doi: 10.13031/trans.58.10715 – start-page: 1 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0790 article-title: Root mean square error (rmse) or mean absolute error (mae): when to use them or not publication-title: Geosci. Model Dev. Discuss. – volume: 43 start-page: 159 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0370 article-title: Comparison of improved relevance vector machines for streamflow predictions publication-title: J. Forecast. doi: 10.1002/for.3028 – volume: 586 year: 2020 ident: 10.1016/j.rineng.2025.104079_br0760 article-title: Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124371 – volume: 381 start-page: 308 year: 2010 ident: 10.1016/j.rineng.2025.104079_br0830 article-title: An integrated framework for the hydrologic simulation of a complex geomorphological river basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.12.003 – volume: 598 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0490 article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126433 – volume: 195 start-page: 153 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0320 article-title: Trend analysis and forecasting of streamflow using random forest in the Punarbhaba River basin publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10696-3 – volume: 23 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0610 article-title: Explainable ensemble learning framework for estimating corrosion rate in suspension bridge main cables publication-title: Results Eng. – year: 2011 ident: 10.1016/j.rineng.2025.104079_br0120 – volume: 22 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0060 article-title: A data-driven approach to river discharge forecasting in the Himalayan region: insights from aglar and paligaad rivers publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102044 – ident: 10.1016/j.rineng.2025.104079_br0710 – year: 2011 ident: 10.1016/j.rineng.2025.104079_br0150 – volume: 23 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0530 article-title: Enhancing wind power prediction with self-attentive variational autoencoders: a comparative study publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102504 – ident: 10.1016/j.rineng.2025.104079_br0210 – volume: 11 start-page: 259 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0400 article-title: Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11020259 – volume: 11 start-page: 597 year: 2006 ident: 10.1016/j.rineng.2025.104079_br0520 article-title: Evaluation of the Nash–sutcliffe efficiency index publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597) – volume: 21 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0080 article-title: A new frontier in streamflow modeling in ungauged basins with sparse data: a modified generative adversarial network with explainable ai publication-title: Results Eng. doi: 10.1016/j.rineng.2024.101920 – year: 1997 ident: 10.1016/j.rineng.2025.104079_br0720 – volume: 9 start-page: 71805 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0700 article-title: Comparison of deep learning techniques for river streamflow forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077703 – volume: 22 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0290 article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102215 – start-page: 785 year: 2016 ident: 10.1016/j.rineng.2025.104079_br0580 article-title: Xgboost: a scalable tree boosting system – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0650 article-title: Analyzing the dynamics between crude oil spot prices and futures prices by maturity terms: deep learning approaches to futures-based forecasting publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103086 – volume: 12 start-page: 3883 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0310 article-title: Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-022-07693-4 – volume: 86 start-page: 3205 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0430 article-title: Hybrid wavelet-gene expression programming and wavelet-support vector machine models for rainfall-runoff modeling publication-title: Water Sci. Technol. doi: 10.2166/wst.2022.400 – volume: 20 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0590 article-title: A comprehensive review on detection of cyber-attacks: data sets, methods, challenges, and future research directions publication-title: Internet of Things doi: 10.1016/j.iot.2022.100615 – volume: 99 start-page: 14415 year: 1994 ident: 10.1016/j.rineng.2025.104079_br0100 article-title: A simple hydrologically based model of land surface water and energy fluxes for general circulation models publication-title: J. Geophys. Res., Atmos. doi: 10.1029/94JD00483 – ident: 10.1016/j.rineng.2025.104079_br0220 – volume: 52 start-page: 181 year: 1998 ident: 10.1016/j.rineng.2025.104079_br0810 article-title: Violin plots: a box plot-density trace synergism publication-title: Am. Stat. doi: 10.1080/00031305.1998.10480559 – volume: 169 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0050 article-title: Deepgr4j: a deep learning hybridization approach for conceptual rainfall-runoff modelling publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2023.105831 – volume: 65 start-page: 87 year: 2020 ident: 10.1016/j.rineng.2025.104079_br0780 article-title: Improved estimators of correlation and r2 for skewed hydrologic data publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2019.1686639 – start-page: 233 year: 2020 ident: 10.1016/j.rineng.2025.104079_br0460 article-title: Machine learning applications in hydrology – volume: 21 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0730 article-title: Deep learning for multi-horizon water levelforecasting in krs reservoir, India publication-title: Results Eng. doi: 10.1016/j.rineng.2024.101828 – volume: 18 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0660 article-title: Efficient machine learning model to predict dynamic viscosity in phosphoric acid production publication-title: Results Eng. doi: 10.1016/j.rineng.2023.101024 – volume: 106 start-page: 7183 year: 2001 ident: 10.1016/j.rineng.2025.104079_br0820 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res., Atmos. doi: 10.1029/2000JD900719 – volume: 155 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0230 article-title: The potential of data-driven approaches for quantifying hydrological extremes publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2021.104017 – volume: 191 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0390 article-title: Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106541 – volume: 10 start-page: 1655 year: 2018 ident: 10.1016/j.rineng.2025.104079_br0470 article-title: Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting publication-title: Water doi: 10.3390/w10111655 – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.rineng.2025.104079_br0550 article-title: Applications of hybrid wavelet–artificial intelligence models in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 – volume: 26 start-page: 3377 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0670 article-title: Deep learning rainfall–runoff predictions of extreme events publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-26-3377-2022 – volume: 4 start-page: 47 year: 2017 ident: 10.1016/j.rineng.2025.104079_br0180 article-title: Assessing the impacts of climate change on river discharge dynamics in oueme river basin (Benin, West Africa) publication-title: Hydrology doi: 10.3390/hydrology4040047 – volume: 586 year: 2020 ident: 10.1016/j.rineng.2025.104079_br0410 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124901 – volume: 926 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0040 article-title: Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.171684 – volume: 13 year: 2010 ident: 10.1016/j.rineng.2025.104079_br0140 article-title: Modèle hydrologique basé sur le principe de moindre action (modhypma) publication-title: Ann. Sci. Agron. – volume: 14 start-page: 731 year: 2012 ident: 10.1016/j.rineng.2025.104079_br0250 article-title: Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data publication-title: J. Hydroinform. doi: 10.2166/hydro.2011.044 – volume: 35 start-page: 4167 year: 2021 ident: 10.1016/j.rineng.2025.104079_br0260 article-title: Performance comparison of an lstm-based deep learning model versus conventional machine learning algorithms for streamflow forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02937-w – volume: 87 start-page: 45 year: 1986 ident: 10.1016/j.rineng.2025.104079_br0110 article-title: An introduction to the European hydrological system—systeme hydrologique europeen, “she”, 1: history and philosophy of a physically-based, distributed modelling system publication-title: J. Hydrol. doi: 10.1016/0022-1694(86)90114-9 – volume: 23 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0440 article-title: Comparative analysis of data driven rainfall-runoff models in the kolar river basin publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102682 – volume: 122 start-page: 8 year: 2013 ident: 10.1016/j.rineng.2025.104079_br0540 article-title: A review on the applications of wavelet transform in hydrology time series analysis publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.11.003 – volume: 15 start-page: 1556 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0690 article-title: A comparative analysis of multiple machine learning methods for flood routing in the Yangtze River publication-title: Water doi: 10.3390/w15081556 – volume: 37 start-page: 3063 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0360 article-title: Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-023-02435-y – volume: 31 start-page: 1164 year: 2006 ident: 10.1016/j.rineng.2025.104079_br0560 article-title: Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/j.pce.2006.03.020 – volume: 24 year: 2024 ident: 10.1016/j.rineng.2025.104079_br0090 article-title: Comparison and integration of physical and interpretable ai-driven models for rainfall-runoff simulation publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103048 – volume: 36 start-page: 961 year: 1990 ident: 10.1016/j.rineng.2025.104079_br0570 article-title: The wavelet transform, time-frequency localization and signal analysis publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.57199 – volume: 22 start-page: 6005 year: 2018 ident: 10.1016/j.rineng.2025.104079_br0010 article-title: Rainfall–runoff modelling using long short-term memory (lstm) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 9 start-page: 226 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0630 article-title: Daily streamflow forecasting in mountainous catchment using xgboost, lightgbm and catboost publication-title: Hydrology doi: 10.3390/hydrology9120226 – volume: 17 year: 2023 ident: 10.1016/j.rineng.2025.104079_br0380 article-title: Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data publication-title: Eng. Appl. Comput. Fluid Mech. – ident: 10.1016/j.rineng.2025.104079_br0620 – volume: 12 start-page: 2126 year: 2022 ident: 10.1016/j.rineng.2025.104079_br0640 article-title: Prediction of pile bearing capacity using xgboost algorithm: modeling and performance evaluation publication-title: Appl. Sci. doi: 10.3390/app12042126 – volume: 19 start-page: 1295 year: 2019 ident: 10.1016/j.rineng.2025.104079_br0800 article-title: The utilization of a gr4j model and wavelet-based artificial neural network for rainfall–runoff modelling publication-title: Water Supply doi: 10.2166/ws.2018.189 – year: 2010 ident: 10.1016/j.rineng.2025.104079_br0070 |
| SSID | ssj0002810137 |
| Score | 2.367921 |
| SecondaryResourceType | review_article |
| Snippet | Accurately simulating river discharge remains a challenge. Hybrid models combining hydrological models with machine learning improve discharge simulation and... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 104079 |
| SubjectTerms | Hybrid models HyMoLAP Machine learning Stochastic hydrological model Uncertainties |
| Title | Hybridization of stochastic hydrological models and machine learning methods for improving rainfall-runoff modeling |
| URI | https://dx.doi.org/10.1016/j.rineng.2025.104079 https://doaj.org/article/e1be73c115be48548e5c47be73833d82 |
| Volume | 25 |
| WOSCitedRecordID | wos001414037900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2590-1230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810137 issn: 2590-1230 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-sEUlsx_EIqIiFigGkbpGfUFRSlBQkFn47PjupMsHCksFx7Oh8sj_bd9-H0IVRRjgn4aBKy4TyokgEgxAox6mSlkmamiA2wSeTcjoVDwOpL4gJi_TA0XCXNlOWE-2Bi7K09PjaMk05lJWEmDLMvikXg83UazgyyoBLr8-VCwFdkE1XP_stYc7gZjOF6K3BWhQo-wdL0mCZud1B2x0-xFfxv3bRmq330NaANXAftXdfkGbVJVDihcMewOkXCYzL-OXLNP18hoPMTYtlbfBbCJq0uFOJeMZROrrFHrTiWX-ygEEwwsn5PGk-6oVzsQX_4gA93Y4fb-6STjsh0TQrl4kSJmelzPx-i9mUaJOmJjXE6iLT1thMqkwaogpDhc2FH5CUae0k81M35drXPETr9aK2RwhzaS0wRhWCEW955yGVK5WmmpcizxUZIdJbsdIdsTjoW8yrPoLstYq2r8D2VbT9CCWrr94jscYf9a9hgFZ1gRY7FHhnqTpnqf5ylhHi_fBWHcKIyME3Nfu1--P_6P4EbUKTMYTtFK0vmw97hjb053LWNufBg_3z_nv8A2jd-nU |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridization+of+stochastic+hydrological+models+and+machine+learning+methods+for+improving+rainfall-runoff+modeling&rft.jtitle=Results+in+engineering&rft.au=Sianou+Ez%C3%A9ckiel+Hou%C3%A9nafa&rft.au=Olatunji+Johnson&rft.au=Erick+K.+Ronoh&rft.au=Stephen+E.+Moore&rft.date=2025-03-01&rft.pub=Elsevier&rft.eissn=2590-1230&rft.volume=25&rft.spage=104079&rft_id=info:doi/10.1016%2Fj.rineng.2025.104079&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1be73c115be48548e5c47be73833d82 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |