Exponential Stability of Almost Periodic Solutions for Memristor-Based Neural Networks with Distributed Leakage Delays

In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural net...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computation Ročník 28; číslo 12; s. 2726 - 2756
Hlavní autoři: Xu, Changjin, Li, Peiluan, Pang, Yicheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.12.2016
ISSN:1530-888X
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-888X
DOI:10.1162/NECO_a_00895