Exponential Stability of Almost Periodic Solutions for Memristor-Based Neural Networks with Distributed Leakage Delays

In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural net...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation Vol. 28; no. 12; pp. 2726 - 2756
Main Authors: Xu, Changjin, Li, Peiluan, Pang, Yicheng
Format: Journal Article
Language:English
Published: United States 01.12.2016
ISSN:1530-888X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-888X
DOI:10.1162/NECO_a_00895