Distributed Model-Free Bipartite Consensus Tracking for Unknown Heterogeneous Multi-Agent Systems with Switching Topology
This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4164 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
MDPI
27.07.2020
MDPI AG |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous multi-agent systems (MASs) with switching topology and coopetition networks. The main innovation of this algorithm is to estimate an equivalent dynamic linearization data model by the pseudo partial derivative (PPD) approach, where only the input–output (I/O) data of each agent is required, and the cooperative interactions among agents are investigated. The rigorous proof of the convergent property is given for DMFABCT, which reveals that the trajectories error can be reduced. Finally, three simulations results show that the novel DMFABCT scheme is effective and robust for unknown heterogeneous discrete-time MASs with switching topologies to complete bipartite consensus tracking tasks. |
|---|---|
| AbstractList | This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous multi-agent systems (MASs) with switching topology and coopetition networks. The main innovation of this algorithm is to estimate an equivalent dynamic linearization data model by the pseudo partial derivative (PPD) approach, where only the input–output (I/O) data of each agent is required, and the cooperative interactions among agents are investigated. The rigorous proof of the convergent property is given for DMFABCT, which reveals that the trajectories error can be reduced. Finally, three simulations results show that the novel DMFABCT scheme is effective and robust for unknown heterogeneous discrete-time MASs with switching topologies to complete bipartite consensus tracking tasks. This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous multi-agent systems (MASs) with switching topology and coopetition networks. The main innovation of this algorithm is to estimate an equivalent dynamic linearization data model by the pseudo partial derivative (PPD) approach, where only the input-output (I/O) data of each agent is required, and the cooperative interactions among agents are investigated. The rigorous proof of the convergent property is given for DMFABCT, which reveals that the trajectories error can be reduced. Finally, three simulations results show that the novel DMFABCT scheme is effective and robust for unknown heterogeneous discrete-time MASs with switching topologies to complete bipartite consensus tracking tasks.This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous multi-agent systems (MASs) with switching topology and coopetition networks. The main innovation of this algorithm is to estimate an equivalent dynamic linearization data model by the pseudo partial derivative (PPD) approach, where only the input-output (I/O) data of each agent is required, and the cooperative interactions among agents are investigated. The rigorous proof of the convergent property is given for DMFABCT, which reveals that the trajectories error can be reduced. Finally, three simulations results show that the novel DMFABCT scheme is effective and robust for unknown heterogeneous discrete-time MASs with switching topologies to complete bipartite consensus tracking tasks. |
| Author | Yu, Hongnian Zhao, Huarong Peng, Li |
| AuthorAffiliation | 3 School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK; h.yu@napier.ac.uk 2 Jiangsu Province Internet of Things Application Technology Key Construction Laboratory, Wuxi Taihu College, Wuxi 214145, China 1 Research Center of Engineering Applications for IOT, Jiangnan University, Wuxi 214122, China; zhaohuarong@stu.jiangnan.edu.cn |
| AuthorAffiliation_xml | – name: 3 School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK; h.yu@napier.ac.uk – name: 2 Jiangsu Province Internet of Things Application Technology Key Construction Laboratory, Wuxi Taihu College, Wuxi 214145, China – name: 1 Research Center of Engineering Applications for IOT, Jiangnan University, Wuxi 214122, China; zhaohuarong@stu.jiangnan.edu.cn |
| Author_xml | – sequence: 1 givenname: Huarong surname: Zhao fullname: Zhao, Huarong – sequence: 2 givenname: Li surname: Peng fullname: Peng, Li – sequence: 3 givenname: Hongnian orcidid: 0000-0003-2894-2086 surname: Yu fullname: Yu, Hongnian |
| BookMark | eNptkUtv3CAQgFGVqnm0h_4Dju3BDS8bc6mUbpsmUqIesjkjwIOXxGu2gBPtv683G0VN1Qsw8M0HwxyjgzGOgNBHSr5wrshpZoTWgjbiDTqigomqZYwc_LU-RMc53xHCOOftO3TImWSNqvkR2n4PuaRgpwIdvo4dDNV5AsDfwsakEgrgRRwzjHnKeJmMuw9jj31M-Ha8H-PjiC-gQIo9jBBn5HoaSqjO5rDgm20usM74MZQVvplHt9olL-MmDrHfvkdvvRkyfHieT9Dt-Y_l4qK6-vXzcnF2VTlB21JJL4wnHcjOcCfbzgBjTirrreuokh44aaRoupYJ5TlVwGknGsVsIwix3vATdLn3dtHc6U0Ka5O2OpqgnzZi6vWuUjeAblora9MoIhkVRjJrLG-V4tQ3rraUz66ve9dmsmvo3FxmMsMr6euTMax0Hx-0FLyWQs6CT8-CFH9PkIteh-xgGMzT_2kmmCJ1TQSb0c971KWYcwL_cg0letd2_dL2mT39h3WhmBLi7hVh-E_GHzjgsfU |
| CitedBy_id | crossref_primary_10_3390_s22239537 crossref_primary_10_1109_ACCESS_2021_3098303 crossref_primary_10_1109_ACCESS_2024_3392578 crossref_primary_10_1109_TSMC_2022_3230504 crossref_primary_10_1002_rnc_5630 crossref_primary_10_1049_cth2_12259 crossref_primary_10_3390_s21124138 crossref_primary_10_1016_j_amc_2021_126582 |
| Cites_doi | 10.1109/TNNLS.2019.2899632 10.1109/TCYB.2018.2828308 10.1007/s13369-017-2441-2 10.1109/TIE.2016.2542134 10.1109/TSMC.2017.2761362 10.1016/j.jfranklin.2019.11.034 10.1007/s10514-019-09845-4 10.1016/j.sysconle.2016.05.017 10.1109/TSMC.2017.2734799 10.1016/j.sysconle.2017.01.004 10.1016/j.physa.2019.03.105 10.1016/j.jfranklin.2019.01.052 10.1109/ACCESS.2019.2919992 10.1016/j.jprocont.2018.06.006 10.1109/TCYB.2018.2819695 10.1109/TCST.2010.2093136 10.1016/j.isatra.2018.01.014 10.1109/TIE.2016.2636126 10.1109/TIE.2019.2910034 10.1016/j.cam.2017.10.006 10.1016/0005-1098(94)90209-7 10.1109/TFUZZ.2019.2936808 10.1109/TNNLS.2017.2673020 10.1109/TAC.2020.3008125 10.1109/TSMC.2017.2785794 10.1016/j.automatica.2014.10.022 10.1007/s00521-016-2393-6 10.1016/j.physa.2018.09.066 10.1016/j.automatica.2019.108672 10.1016/j.neucom.2019.11.047 10.1016/j.jfranklin.2019.01.018 10.1109/TCSI.2018.2838087 10.1016/j.neucom.2015.11.088 10.1016/j.neucom.2019.10.095 10.1016/j.jfranklin.2018.10.009 10.1016/j.automatica.2019.108633 10.1109/TAC.2012.2224251 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.3390/s20154164 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: UdK - DOAJ Directory of Open Access Journals (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_68b75a6907214a72bab389931f6c5b13 PMC7435747 10_3390_s20154164 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 7X8 5PM |
| ID | FETCH-LOGICAL-c418t-7f4af0de7da3c78dae22c79bfbcd197fe306746d8249f319e31d4692b6400bfa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000568200900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:44:31 EDT 2025 Tue Nov 04 01:59:18 EST 2025 Sun Nov 09 13:30:41 EST 2025 Tue Nov 18 22:44:28 EST 2025 Sat Nov 29 07:11:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-7f4af0de7da3c78dae22c79bfbcd197fe306746d8249f319e31d4692b6400bfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2894-2086 |
| OpenAccessLink | https://doaj.org/article/68b75a6907214a72bab389931f6c5b13 |
| PMID | 32726953 |
| PQID | 2429055042 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_68b75a6907214a72bab389931f6c5b13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435747 proquest_miscellaneous_2429055042 crossref_primary_10_3390_s20154164 crossref_citationtrail_10_3390_s20154164 |
| PublicationCentury | 2000 |
| PublicationDate | 20200727 |
| PublicationDateYYYYMMDD | 2020-07-27 |
| PublicationDate_xml | – month: 7 year: 2020 text: 20200727 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Deng (ref_31) 2019; 516 Hou (ref_4) 2016; 64 Odekunle (ref_15) 2020; 112 Zhao (ref_35) 2017; 102 Hock (ref_1) 2019; 43 ref_11 Bu (ref_12) 2017; 29 Altafini (ref_25) 2012; 58 Wu (ref_26) 2019; 525 Yang (ref_9) 2016; 28 Hui (ref_2) 2020; 31 Yang (ref_10) 2016; 179 Kadri (ref_22) 2017; 42 Yang (ref_39) 2016; 94 Wu (ref_24) 2019; 49 Xu (ref_8) 2019; 356 Oh (ref_3) 2015; 53 Li (ref_13) 2020; 67 Liu (ref_21) 2018; 68 Barbot (ref_5) 2020; 112 Peng (ref_32) 2020; 369 Xu (ref_29) 2020; 379 Wu (ref_18) 2019; 49 Emelyanov (ref_6) 1986; 24 Li (ref_34) 2019; 356 Li (ref_33) 2019; 7 Li (ref_7) 2018; 326 Wang (ref_30) 2018; 65 Bhowmick (ref_28) 2018; 66 Bu (ref_37) 2019; 49 Yang (ref_14) 2019; 356 Zhang (ref_16) 2017; 64 Hou (ref_38) 2010; 19 Dupont (ref_40) 1994; 30 ref_27 Li (ref_36) 2020; 357 Radac (ref_23) 2018; 73 Zhang (ref_17) 2019; 49 Ren (ref_20) 2020; 382 Liu (ref_19) 2018; 49 |
| References_xml | – volume: 31 start-page: 89 year: 2020 ident: ref_2 article-title: 3-D Learning-Enhanced Adaptive ILC for Iteration-Varying Formation Tasks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2899632 – volume: 49 start-page: 2536 year: 2018 ident: ref_19 article-title: Neural Networks-Based Adaptive Finite-Time Fault-Tolerant Control for a Class of Strict-Feedback Switched Nonlinear Systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2828308 – volume: 42 start-page: 2799 year: 2017 ident: ref_22 article-title: Model-Free Fuzzy Adaptive Control for MIMO Systems publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2441-2 – volume: 64 start-page: 4091 year: 2017 ident: ref_16 article-title: Data-Driven Optimal Consensus Control for Discrete-Time Multi-Agent Systems with Unknown Dynamics Using Reinforcement Learning Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2542134 – volume: 49 start-page: 2189 year: 2019 ident: ref_24 article-title: Bipartite Consensus Control of High-Order Multiagent Systems with Unknown Disturbances publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2761362 – volume: 357 start-page: 314 year: 2020 ident: ref_36 article-title: H∞ group consensus for partial-state coupled linear systems with fixed and switching topologies in the cooperation-competition networks publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.11.034 – volume: 43 start-page: 1989 year: 2019 ident: ref_1 article-title: Distributed iterative learning control for multi-agent systems publication-title: Auton. Robot. doi: 10.1007/s10514-019-09845-4 – volume: 94 start-page: 97 year: 2016 ident: ref_39 article-title: Iterative learning control with input sharing for multi-agent consensus tracking publication-title: Syst. Control. Lett. doi: 10.1016/j.sysconle.2016.05.017 – volume: 49 start-page: 677 year: 2019 ident: ref_37 article-title: Model Free Adaptive Iterative Learning Consensus Tracking Control for a Class of Nonlinear Multiagent Systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2734799 – volume: 102 start-page: 22 year: 2017 ident: ref_35 article-title: Adaptive finite-time bipartite consensus for second-order multi-agent systems with antagonistic interactions publication-title: Syst. Control. Lett. doi: 10.1016/j.sysconle.2017.01.004 – volume: 525 start-page: 1360 year: 2019 ident: ref_26 article-title: Bipartite tracking consensus for multi-agent systems with Lipschitz-Type nonlinear dynamics publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2019.03.105 – volume: 356 start-page: 6571 year: 2019 ident: ref_14 article-title: New distributed adaptive protocols for uncertain nonlinear leader-follower multi-agent systems via a repetitive learning control approach publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.01.052 – volume: 7 start-page: 71095 year: 2019 ident: ref_33 article-title: Reverse Group Consensus of Second-Order Multi-Agent Systems with Delayed Nonlinear Dynamics in the Cooperation—Competition Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919992 – volume: 68 start-page: 186 year: 2018 ident: ref_21 article-title: Performance-based data-driven model-free adaptive sliding mode control for a class of discrete-time nonlinear processes publication-title: J. Process. Control. doi: 10.1016/j.jprocont.2018.06.006 – volume: 24 start-page: 63 year: 1986 ident: ref_6 article-title: Second order sliding modes in controlling uncertain systems publication-title: Sov. J. Comput. Syst. Sci. – volume: 49 start-page: 2095 year: 2019 ident: ref_17 article-title: Data-Driven Distributed Optimal Consensus Control for Unknown Multiagent Systems with Input-Delay publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2819695 – volume: 19 start-page: 1549 year: 2010 ident: ref_38 article-title: A Novel Data-Driven Control Approach for a Class of Discrete-Time Nonlinear Systems publication-title: IEEE Trans. Control. Syst. Technol. doi: 10.1109/TCST.2010.2093136 – volume: 73 start-page: 227 year: 2018 ident: ref_23 article-title: Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.01.014 – volume: 64 start-page: 4076 year: 2016 ident: ref_4 article-title: An overview of dynamic-linearization-based data-driven control and applications publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2636126 – volume: 67 start-page: 3116 year: 2020 ident: ref_13 article-title: Synthesis of ILC–MPC Controller With Data-Driven Approach for Constrained Batch Processes publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2910034 – volume: 326 start-page: 1 year: 2018 ident: ref_7 article-title: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols publication-title: Appl. Math. Comput. doi: 10.1016/j.cam.2017.10.006 – volume: 66 start-page: 1436 year: 2018 ident: ref_28 article-title: Leader—Follower Bipartite Consensus of Linear Multiagent Systems Over a Signed Directed Graph publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 30 start-page: 1083 year: 1994 ident: ref_40 article-title: A survey of models, analysis tools and compensation methods for the control of machines with friction publication-title: Automatica doi: 10.1016/0005-1098(94)90209-7 – ident: ref_11 doi: 10.1109/TFUZZ.2019.2936808 – volume: 29 start-page: 1514 year: 2017 ident: ref_12 article-title: Data-Driven Multiagent Systems Consensus Tracking Using Model Free Adaptive Control publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2673020 – ident: ref_27 doi: 10.1109/TAC.2020.3008125 – volume: 49 start-page: 2499 year: 2019 ident: ref_18 article-title: Depth Control of Model-Free AUVs via Reinforcement Learning publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2785794 – volume: 369 start-page: 124821 year: 2020 ident: ref_32 article-title: A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning publication-title: Appl. Math. Comput. – volume: 53 start-page: 424 year: 2015 ident: ref_3 article-title: A survey of multi-agent formation control publication-title: Automatica doi: 10.1016/j.automatica.2014.10.022 – volume: 28 start-page: 647 year: 2016 ident: ref_9 article-title: Consensus of delayed multi-agent dynamical systems with stochastic perturbation via impulsive approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2393-6 – volume: 516 start-page: 37 year: 2019 ident: ref_31 article-title: Fixed-time bipartite consensus of multi-agent systems with disturbances publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2018.09.066 – volume: 112 start-page: 108672 year: 2020 ident: ref_15 article-title: Reinforcement learning and non-zero-sum game output regulation for multi-player linear uncertain systems publication-title: Automatica doi: 10.1016/j.automatica.2019.108672 – volume: 382 start-page: 96 year: 2020 ident: ref_20 article-title: Data-based stable value iteration optimal control for unknown discrete-time systems with time delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.047 – volume: 356 start-page: 2870 year: 2019 ident: ref_34 article-title: Bipartite output consensus for heterogeneous linear multi-agent systems with fully distributed protocol publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.01.018 – volume: 65 start-page: 4336 year: 2018 ident: ref_30 article-title: Finite-Time Bipartite Consensus for Multi-Agent Systems on Directed Signed Networks publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2018.2838087 – volume: 179 start-page: 290 year: 2016 ident: ref_10 article-title: Second-order consensus in directed networks of identical nonlinear dynamics via impulsive control publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.088 – volume: 379 start-page: 284 year: 2020 ident: ref_29 article-title: Event-triggered bipartite consensus for high-order multi-agent systems with input saturation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.095 – volume: 356 start-page: 441 year: 2019 ident: ref_8 article-title: Leader-following fixed-time quantized consensus of multi-agent systems via impulsive control publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.10.009 – volume: 112 start-page: 108633 year: 2020 ident: ref_5 article-title: Discrete differentiators based on sliding modes publication-title: Automatica doi: 10.1016/j.automatica.2019.108633 – volume: 58 start-page: 935 year: 2012 ident: ref_25 article-title: Consensus Problems on Networks with Antagonistic Interactions publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.2012.2224251 |
| SSID | ssj0023338 |
| Score | 2.3623636 |
| Snippet | This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4164 |
| SubjectTerms | bipartite consensus data driven multi-agent system switching topologies |
| Title | Distributed Model-Free Bipartite Consensus Tracking for Unknown Heterogeneous Multi-Agent Systems with Switching Topology |
| URI | https://www.proquest.com/docview/2429055042 https://pubmed.ncbi.nlm.nih.gov/PMC7435747 https://doaj.org/article/68b75a6907214a72bab389931f6c5b13 |
| Volume | 20 |
| WOSCitedRecordID | wos000568200900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: UdK - DOAJ Directory of Open Access Journals (Open Access) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database (ProQuest) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NixMxFA-6etCD-In1o0Tx4CXsTJKZJMettqzglqK7Uk9DPrGwzC5tFfbi3-57mWnpgODFSw6ZwGTy3iPv9yb5_Qh5l0yMleMVRFpwTAarmDO6ZkYGE5TTUeZbad8-q_lcL5dmcSD1hWfCOnrgbuGOa-1UZRHD8VJaxZ11SAknylT7ymW9Wl4oswNTPdQSgLw6HiEBoP54wzFVKGs52H0ySf8gsxyeizzYaGYPyYM-Q6Qn3cwekVuxfUzuH_AGPiE3H5HuFpWqYqCoZnbJZusY6WR1jR-0jRR1OFHEYkNhM_JYDqeQndKLFmtoLT3FQzBX4DsRgD_Nl3DZCV6yoj2DOcX6LP0KbT5rSc87LYWbp-RiNj3_cMp6DQXmZam3TCVpUxGiClZ4pYONnHtlXHI-lEaliJBB1kEDDEsQjlGUARAzdzUEt0tWPCNH7VUbnxPKCyekjsIm76XXSZcAhozAwlEdgo4j8n63to3vCcZR5-KyAaCBZmj2ZhiRt_uh1x2rxt8GTdBA-wFIhJ07wD2a3j2af7nHiLzZmbeBwMG_ITavbQO5iSkAn0k-Impg98Ebh0_a1Y9MwQ15VwVA7MX_mOJLco8jiC8U4-oVOdquf8bX5K7_tV1t1mNyWy1VbvWY3JlM54sv4-zr0J79nkLf4tPZ4vsf2SsHhA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Model-Free+Bipartite+Consensus+Tracking+for+Unknown+Heterogeneous+Multi-Agent+Systems+with+Switching+Topology&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhao%2C+Huarong&rft.au=Peng%2C+Li&rft.au=Yu%2C+Hongnian&rft.date=2020-07-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=15&rft_id=info:doi/10.3390%2Fs20154164&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |