Distributed Model-Free Bipartite Consensus Tracking for Unknown Heterogeneous Multi-Agent Systems with Switching Topology

This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 20; číslo 15; s. 4164
Hlavní autoři: Zhao, Huarong, Peng, Li, Yu, Hongnian
Médium: Journal Article
Jazyk:angličtina
Vydáno: MDPI 27.07.2020
MDPI AG
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a distributed model-free adaptive bipartite consensus tracking (DMFABCT) scheme. The proposed scheme is independent of a precise mathematical model, but can achieve both bipartite time-invariant and time-varying trajectory tracking for unknown dynamic discrete-time heterogeneous multi-agent systems (MASs) with switching topology and coopetition networks. The main innovation of this algorithm is to estimate an equivalent dynamic linearization data model by the pseudo partial derivative (PPD) approach, where only the input–output (I/O) data of each agent is required, and the cooperative interactions among agents are investigated. The rigorous proof of the convergent property is given for DMFABCT, which reveals that the trajectories error can be reduced. Finally, three simulations results show that the novel DMFABCT scheme is effective and robust for unknown heterogeneous discrete-time MASs with switching topologies to complete bipartite consensus tracking tasks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20154164