Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks
We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sourc...
Uloženo v:
| Vydáno v: | The Journal of chemical physics Ročník 153; číslo 2; s. 025101 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
14.07.2020
|
| Témata: | |
| ISSN: | 1089-7690, 1089-7690 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and path integrals. The results provide a principled derivation of different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms, and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signaling network. |
|---|---|
| AbstractList | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and path integrals. The results provide a principled derivation of different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms, and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signaling network. We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and path integrals. The results provide a principled derivation of different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms, and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signaling network.We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving complex formation and dissociation reactions. We propose the use of model reduction strategies to understand the "extrinsic" sources of stochasticity arising from the rest of the network. Our approaches are based on subnetwork dynamical equations derived by projection methods and path integrals. The results provide a principled derivation of different components of the extrinsic noise that is observed experimentally in cellular biochemical reactions, over and above the intrinsic noise from the stochasticity of biochemical events in the subnetwork. We explore several intermediate approximations to assess systematically the relative importance of different extrinsic noise components, including initial transients, long-time plateaus, temporal correlations, multiplicative noise terms, and nonlinear noise propagation. The best approximations achieve excellent accuracy in quantitative tests on a simple protein network and on the epidermal growth factor receptor signaling network. |
| Author | Sollich, Peter Rubin, Katy J Bravi, Barbara |
| Author_xml | – sequence: 1 givenname: Barbara orcidid: 0000000348607584 surname: Bravi fullname: Bravi, Barbara organization: Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland – sequence: 2 givenname: Katy J surname: Rubin fullname: Rubin, Katy J organization: Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom – sequence: 3 givenname: Peter orcidid: 0000000301697893 surname: Sollich fullname: Sollich, Peter organization: Department of Mathematics, King's College London, Strand, London WC2R 2LS, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32668933$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0DtPwzAUBWALFdEHDPwB5JElxa848YgqXlIlBjoTOfa1akjsEjuC_nsiARLTPcN3znCXaBZiAIQuKVlTIvlNuSaE1JyIE7SgpFZFJRWZ_ctztEzpbUK0YuIMzTmTslacL9DryzFl6HX2BvfRQocHsKPJPgZs9CGPAySc94DtMejem4Sjw_CVBx_SVAnRJ8A-4NZHs4cJ6A6nsQ2QP-Pwns7RqdNdgovfu0K7-7vd5rHYPj88bW63hRG0zoWwxFWO2xIq7jTnyqjSVqCksYQaJYy2QhPpSg3OUUpapiThVW1kKyvp2Apd_8wehvgxQspN75OBrtMB4pgaJpgQgvGSTPTql45tD7Y5DL7Xw7H5ewn7BkXMZWk |
| CitedBy_id | crossref_primary_10_1088_2632_2153_ad9194 crossref_primary_10_1088_1751_8121_acfd6a |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1063/5.0008304 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | 32668933 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAPUP AAYIH ABJGX ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CGR CS3 CUY CVF D-I DU5 EBS ECM EIF F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPM NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 7X8 AAGWI ABUFD |
| ID | FETCH-LOGICAL-c418t-4d0f7f3d5e73fa339c95d7e96cd01c94cad4a06f5aeff110b2960378c6b676f2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551898100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-7690 |
| IngestDate | Sun Nov 09 09:28:36 EST 2025 Thu Apr 03 06:57:29 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-4d0f7f3d5e73fa339c95d7e96cd01c94cad4a06f5aeff110b2960378c6b676f2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000000348607584 0000000301697893 |
| OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/5.0008304 |
| PMID | 32668933 |
| PQID | 2424442350 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2424442350 pubmed_primary_32668933 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jul-14 20200714 |
| PublicationDateYYYYMMDD | 2020-07-14 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-Jul-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2020 |
| SSID | ssj0001724 |
| Score | 2.3569741 |
| Snippet | We consider the general problem of describing the dynamics of subnetworks of larger biochemical reaction networks, e.g., protein interaction networks involving... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 025101 |
| SubjectTerms | ErbB Receptors - chemistry ErbB Receptors - metabolism Models, Biological Protein Interaction Maps Stochastic Processes |
| Title | Systematic model reduction captures the dynamics of extrinsic noise in biochemical subnetworks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32668933 https://www.proquest.com/docview/2424442350 |
| Volume | 153 |
| WOSCitedRecordID | wos000551898100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAguDCUrayyUhcLZLY8XJCqKLiQlWJHnqi8irlkpS65fuxs9ATEhKX3BIlnsnMG8_4PQAeXMaUTpxBLqUcEScs4jTBiLCEKsNzwyyvxSbYeMxnMzFpN9x8O1bZxcQ6UJtKxz3yx3iMgYTcnydPi08UVaNid7WV0NgGPRygTPRqNtuwhYfkTJoBe4FYKAM7ZiGKH-NOSkAftT7bL8iyzjCjo_--2zE4bLElfG6c4QRs2bIP9oedpFsf7NXzntqfgo_3HwZnWIvhwGXkcI1WglouYlvBw4ANoWkU6z2sHAxxfFmU4QGwrApvYVFCVUTFrZpyAPq1Kpuhcn8GpqOX6fAVtVILSJOUrxAxiWMOm9wy7CTGQotoJkG1SVItiJaGyIS6XFrnAmJQWah8MOOaKsqoy87BTlmV9hJAQhw1CddWpJJYqWSo1pVRmqvUMkqzAbjv1nAevj62J2Rpq7Wfb1ZxAC4aQ8wXDeXGPIBMGpAVvvrD3dfgIItFcWS_JDeg58J_bG_Brv5aFX55V7tIuI4nb99_2Mjq |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+model+reduction+captures+the+dynamics+of+extrinsic+noise+in+biochemical+subnetworks&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Bravi%2C+Barbara&rft.au=Rubin%2C+Katy+J&rft.au=Sollich%2C+Peter&rft.date=2020-07-14&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=153&rft.issue=2&rft.spage=025101&rft_id=info:doi/10.1063%2F5.0008304&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7690&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7690&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7690&client=summon |