Data-driven multi-objective optimisation of coal-fired boiler combustion systems
•Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need...
Uložené v:
| Vydané v: | Applied energy Ročník 229; s. 446 - 458 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.11.2018
|
| Predmet: | |
| ISSN: | 0306-2619, 1872-9118 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need for repeated optimisation.•Methods are demonstrated on the data collected from Jianbi power plant, China.
Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located. |
|---|---|
| AbstractList | Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located. •Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need for repeated optimisation.•Methods are demonstrated on the data collected from Jianbi power plant, China. Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located. |
| Author | Wang, Chunlin Rahat, Alma A.M. Everson, Richard M. Fieldsend, Jonathan E. |
| Author_xml | – sequence: 1 givenname: Alma A.M. surname: Rahat fullname: Rahat, Alma A.M. email: A.A.M.Rahat@exeter.ac.uk organization: Department of Computer Science, University of Exeter, UK – sequence: 2 givenname: Chunlin surname: Wang fullname: Wang, Chunlin organization: Hangzhou Dianzi University, China – sequence: 3 givenname: Richard M. surname: Everson fullname: Everson, Richard M. organization: Department of Computer Science, University of Exeter, UK – sequence: 4 givenname: Jonathan E. surname: Fieldsend fullname: Fieldsend, Jonathan E. organization: Department of Computer Science, University of Exeter, UK |
| BookMark | eNqNkE1LAzEQhoNUsFb_guzRy9bMfiRZ8KD4DQU9eA_ZZFZSdjc1SQv996ZWL17qaYZ33neYeU7JZHQjEnIBdA4U2NVyrlY4ov_YzgsKYk75Tj8iUxC8yBsAMSFTWlKWFwyaE3IawpJSWkBBp-TtXkWVG283OGbDuo82d-0SdUxC5lbRDjaoaN2YuS7TTvV5Zz2arHW2R5-UoV2H73nYhohDOCPHneoDnv_UGXl_fHi_e84Xr08vd7eLXFfAY46N1rxtBau0qnjVMdoVWBnTMG54zYxKDdZQGlVrKFlRQ9dwodsKdYWmLWfkcr925d3nGkOU6VCNfa9GdOsgC6jL9G1Vin9YgQlBBTTJyvZW7V0IHju58nZQfiuByh1suZS_sOUOtqR8p6fg9Z-gtvGbW_TK9ofjN_s4JmIbi14GbXHUaBJsHaVx9tCKL6HBo5E |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_136060 crossref_primary_10_1016_j_fuel_2022_126854 crossref_primary_10_1016_j_fuel_2022_125921 crossref_primary_10_1016_j_asoc_2024_111325 crossref_primary_10_1016_j_energy_2022_123551 crossref_primary_10_1109_TEVC_2022_3154231 crossref_primary_10_1016_j_jocs_2024_102307 crossref_primary_10_1016_j_apenergy_2019_113448 crossref_primary_10_1016_j_chemolab_2019_103870 crossref_primary_10_1016_j_fuel_2021_120439 crossref_primary_10_1016_j_energy_2025_136765 crossref_primary_10_1016_j_apenergy_2020_115339 crossref_primary_10_1016_j_energy_2023_128165 crossref_primary_10_1016_j_energy_2024_132106 crossref_primary_10_1016_j_eswa_2022_118531 crossref_primary_10_1016_j_fuel_2020_117360 crossref_primary_10_3390_buildings13092125 crossref_primary_10_1088_1742_6596_2003_1_012003 crossref_primary_10_1016_j_energy_2021_119912 crossref_primary_10_1016_j_energy_2025_136735 crossref_primary_10_21496_ams_2023_008 crossref_primary_10_1016_j_energy_2024_130432 crossref_primary_10_1016_j_energy_2024_132495 crossref_primary_10_1016_j_apenergy_2020_115745 crossref_primary_10_1088_1742_6596_3086_1_012012 crossref_primary_10_3390_catal12020141 crossref_primary_10_1016_j_heliyon_2024_e40741 crossref_primary_10_1016_j_energy_2023_128748 crossref_primary_10_3390_pr11102889 crossref_primary_10_3390_su12104171 crossref_primary_10_3390_en16155674 crossref_primary_10_3390_en16217409 crossref_primary_10_1002_ente_202100045 crossref_primary_10_1016_j_tsep_2025_103716 crossref_primary_10_3390_en15239076 crossref_primary_10_1016_j_combustflame_2023_113184 crossref_primary_10_1007_s11814_020_0478_5 crossref_primary_10_1080_00102202_2023_2164917 crossref_primary_10_1109_ACCESS_2024_3372660 crossref_primary_10_1002_ep_14059 crossref_primary_10_1016_j_ifacol_2022_07_501 crossref_primary_10_1016_j_engappai_2024_107869 crossref_primary_10_1016_j_energy_2019_116589 crossref_primary_10_3390_biomimetics9110717 crossref_primary_10_1002_cjce_24658 crossref_primary_10_1016_j_apenergy_2023_121800 crossref_primary_10_1016_j_eswa_2023_121783 crossref_primary_10_1016_j_energy_2024_130270 crossref_primary_10_1016_j_compchemeng_2022_107913 |
| Cites_doi | 10.1109/CEC.2005.1554691 10.1016/j.fuel.2008.10.038 10.1016/j.fuel.2009.04.001 10.1080/10473289.2005.10464736 10.1016/j.fuel.2015.06.021 10.1002/for.3980040103 10.1016/j.fuel.2009.04.023 10.4304/jnw.8.6.1300-1306 10.1109/ISDA.2005.15 10.1016/j.atmosenv.2008.08.021 10.1109/TEVC.2007.913109 10.1016/j.fuel.2014.02.043 10.4177/CCGP-D-14-00009.1 10.1016/j.eswa.2010.12.042 10.1016/S0082-0784(06)80104-9 10.1016/j.apenergy.2012.10.056 10.1016/S0360-1285(03)00058-3 10.1016/j.apenergy.2008.12.032 10.1002/er.1070 10.1109/TEVC.2003.810733 10.1016/j.ejor.2014.02.001 10.1016/j.fuel.2010.05.008 10.1016/j.fuel.2012.11.006 10.1016/j.ejor.2006.08.008 10.1016/j.enpol.2008.08.016 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2018.07.101 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 458 |
| ExternalDocumentID | 10_1016_j_apenergy_2018_07_101 S030626191831136X |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c417t-e9cc7bb864ca474f60f2e4dd967d756da967e513da5c136251f978cb4ec4edb3 |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449891500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-2619 |
| IngestDate | Sun Nov 09 11:35:27 EST 2025 Thu Oct 02 09:59:34 EDT 2025 Sat Nov 29 07:19:41 EST 2025 Tue Nov 18 21:56:16 EST 2025 Fri Feb 23 02:47:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Probabilistic dominance Evolutionary multi-objective optimization under uncertainty NOx Coal combustion optimisation Gaussian processes Unburned carbon content in fly ash |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c417t-e9cc7bb864ca474f60f2e4dd967d756da967e513da5c136251f978cb4ec4edb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2116880819 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2153619438 proquest_miscellaneous_2116880819 crossref_primary_10_1016_j_apenergy_2018_07_101 crossref_citationtrail_10_1016_j_apenergy_2018_07_101 elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_07_101 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-01 |
| PublicationDateYYYYMMDD | 2018-11-01 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nebro, Luna, Alba, Dorronsoro, Durillo, Beham (b0090) 2008; 12 Li, Xu, Hui, Wei (b0045) 2009; 86 Smrekar, Potonik, Seneganik (b0025) 2013; 106 Wu, Zhou, Ren, Zheng, Cen (b0075) 2009; 88 Zhao, Wang, Duan, Lei, Cao, Hao (b0015) 2008; 42 Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH Zurich, Switzerland; 1999. Moraglio, Poli (b0180) 2004 Deb (b0155) 2001 Wu, Zhou, Zhao, Cen (b0095) 2011; 38 Rasmussen, Williams (b0125) 2006 Bowman (b0020) 1992; 24 Zhou, Cen, Fan (b0040) 2005; 29 Alvarez, Lawrence (b0145) 2011; 12 Beume, Naujoks, Emmerich (b0190) 2007; 181 Shafiee, Topal (b0005) 2009; 37 Yu, Zhu, Peng (b0110) 2013; 8 Kalogirou (b0120) 2003; 29 Dal Secco, Juan, Louis-Louisy, Lucas, Plion, Porcheron (b0070) 2015; 158 Hughes (b0165) 2001 Fonseca, Fleming (b0195) 1996; vol. 1141 Zhou, Cen (b0115) 2018 GPy. GPy: A gaussian process framework in python Since 2012. Fieldsend JE, Everson RM. Multi-objective optimisation in the presence of uncertainty. In: IEEE congress on evolutionary computation, vol. 1 of CEC ’05; 2005. p. 243–50. Kleijnen, Mehdad (b0150) 2014; 236 WHO. Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization (WHO); 2006. Choi, Kim (b0050) 2009; 88 Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. TIK-report 103; 2001. Dindarloo, Hower (b0055) 2015; 7 Gardner (b0135) 1985; 4 Weber, Schaffel-Mancini, Mancini, Kupka (b0065) 2013; 108 Sierra, Coello (b0085) 2005 Si, Romero, Yao, Schuster, Xu, Morey (b0100) 2009; 88 Chui, Gao (b0060) 2010; 89 Coello Coello, Lamont, Veldhuizen (b0160) 2007 Deb, Agrawal, Pratap, Meyarivan (b0105) 2000 Knowles J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the international conference on intelligent systems design and applications, ISDA ’05; 2005. p. 552–7. Fieldsend, Everson, Singh (b0175) 2003; 7 Moretti AL, Jones CS, Asia P-G. Advanced emissions control technologies for coal-fired power plants. Babcock & Wilcox Power Generation Group; BR-1886. Baek, Park, Ko (b0130) 2014; 128 Srivastava, Hall, Khan, Culligan, Lani (b0035) 2005; 55 Dal Secco (10.1016/j.apenergy.2018.07.101_b0070) 2015; 158 Srivastava (10.1016/j.apenergy.2018.07.101_b0035) 2005; 55 Yu (10.1016/j.apenergy.2018.07.101_b0110) 2013; 8 Smrekar (10.1016/j.apenergy.2018.07.101_b0025) 2013; 106 Weber (10.1016/j.apenergy.2018.07.101_b0065) 2013; 108 Hughes (10.1016/j.apenergy.2018.07.101_b0165) 2001 Dindarloo (10.1016/j.apenergy.2018.07.101_b0055) 2015; 7 Nebro (10.1016/j.apenergy.2018.07.101_b0090) 2008; 12 Rasmussen (10.1016/j.apenergy.2018.07.101_b0125) 2006 Deb (10.1016/j.apenergy.2018.07.101_b0105) 2000 Kleijnen (10.1016/j.apenergy.2018.07.101_b0150) 2014; 236 Deb (10.1016/j.apenergy.2018.07.101_b0155) 2001 Zhao (10.1016/j.apenergy.2018.07.101_b0015) 2008; 42 10.1016/j.apenergy.2018.07.101_b0140 Fieldsend (10.1016/j.apenergy.2018.07.101_b0175) 2003; 7 Zhou (10.1016/j.apenergy.2018.07.101_b0040) 2005; 29 10.1016/j.apenergy.2018.07.101_b0185 Bowman (10.1016/j.apenergy.2018.07.101_b0020) 1992; 24 10.1016/j.apenergy.2018.07.101_b0080 Wu (10.1016/j.apenergy.2018.07.101_b0095) 2011; 38 Baek (10.1016/j.apenergy.2018.07.101_b0130) 2014; 128 Choi (10.1016/j.apenergy.2018.07.101_b0050) 2009; 88 Alvarez (10.1016/j.apenergy.2018.07.101_b0145) 2011; 12 Coello Coello (10.1016/j.apenergy.2018.07.101_b0160) 2007 Li (10.1016/j.apenergy.2018.07.101_b0045) 2009; 86 Shafiee (10.1016/j.apenergy.2018.07.101_b0005) 2009; 37 10.1016/j.apenergy.2018.07.101_b0200 Zhou (10.1016/j.apenergy.2018.07.101_b0115) 2018 Gardner (10.1016/j.apenergy.2018.07.101_b0135) 1985; 4 Fonseca (10.1016/j.apenergy.2018.07.101_b0195) 1996; vol. 1141 Sierra (10.1016/j.apenergy.2018.07.101_b0085) 2005 Si (10.1016/j.apenergy.2018.07.101_b0100) 2009; 88 Wu (10.1016/j.apenergy.2018.07.101_b0075) 2009; 88 Kalogirou (10.1016/j.apenergy.2018.07.101_b0120) 2003; 29 Chui (10.1016/j.apenergy.2018.07.101_b0060) 2010; 89 10.1016/j.apenergy.2018.07.101_b0030 10.1016/j.apenergy.2018.07.101_b0010 Beume (10.1016/j.apenergy.2018.07.101_b0190) 2007; 181 10.1016/j.apenergy.2018.07.101_b0170 Moraglio (10.1016/j.apenergy.2018.07.101_b0180) 2004 |
| References_xml | – volume: 38 start-page: 7179 year: 2011 end-page: 7185 ident: b0095 article-title: A comparative study of the multi-objective optimization algorithms for coal-fired boilers publication-title: Expert Syst Appl – volume: 29 start-page: 515 year: 2003 end-page: 566 ident: b0120 article-title: Artificial intelligence for the modeling and control of combustion processes: a review publication-title: Prog Energy Combust Sci – volume: 108 start-page: 586 year: 2013 end-page: 596 ident: b0065 article-title: Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using rans-based computational fluid dynamics publication-title: Fuel – volume: 236 start-page: 573 year: 2014 end-page: 582 ident: b0150 article-title: Multivariate versus univariate kriging metamodels for multi-response simulation models publication-title: Eur J Oper Res – start-page: 505 year: 2005 end-page: 519 ident: b0085 article-title: Improving pso-based multi-objective optimization using crowding, mutation and publication-title: International conference on evolutionary multi-criterion optimization – reference: WHO. Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization (WHO); 2006. – volume: 4 start-page: 1 year: 1985 end-page: 28 ident: b0135 article-title: Exponential smoothing: the state of the art publication-title: J Forecast – reference: GPy. GPy: A gaussian process framework in python, – volume: 86 start-page: 1797 year: 2009 end-page: 1803 ident: b0045 article-title: NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging publication-title: Appl Energy – reference: Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH Zurich, Switzerland; 1999. – volume: 106 start-page: 89 year: 2013 end-page: 99 ident: b0025 article-title: Multi-step-ahead prediction of NOx emissions for a coal-based boiler publication-title: Appl Energy – year: 2018 ident: b0115 article-title: Combustion optimization based on computational intelligence, advanced topics in science and technology in China – reference: Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. TIK-report 103; 2001. – volume: 7 start-page: 19 year: 2015 end-page: 29 ident: b0055 article-title: Prediction of the unburned carbon content of fly ash in coal-fired power plants publication-title: Coal Combust Gasificat Prod – start-page: 1377 year: 2004 end-page: 1388 ident: b0180 article-title: Topological interpretation of crossover publication-title: Genetic and evolutionary computation – GECCO 2004 – year: 2001 ident: b0155 article-title: Multi-objective optimization using evolutionary algorithms – volume: 42 start-page: 8442 year: 2008 end-page: 8452 ident: b0015 article-title: Primary air pollutant emissions of coal-fired power plants in china: Current status and future prediction publication-title: Atmos Environ – volume: 128 start-page: 62 year: 2014 end-page: 70 ident: b0130 article-title: The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission publication-title: Fuel – reference: Moretti AL, Jones CS, Asia P-G. Advanced emissions control technologies for coal-fired power plants. Babcock & Wilcox Power Generation Group; BR-1886. – year: 2007 ident: b0160 article-title: Evolutionary algorithms for solving multi-objective problems – reference: Fieldsend JE, Everson RM. Multi-objective optimisation in the presence of uncertainty. In: IEEE congress on evolutionary computation, vol. 1 of CEC ’05; 2005. p. 243–50. – start-page: 849 year: 2000 end-page: 858 ident: b0105 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II publication-title: Proceedings of parallel problem solving from nature – PPSN VI – volume: 29 start-page: 499 year: 2005 end-page: 510 ident: b0040 article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms publication-title: Int J Energy Res – volume: 55 start-page: 1367 year: 2005 end-page: 1388 ident: b0035 article-title: Nitrogen oxides emission control options for coal-fired electric utility boilers publication-title: J Air Waste Management Assoc – volume: 8 start-page: 1300 year: 2013 end-page: 1306 ident: b0110 article-title: Multi-objective optimization of coal-fired boiler combustion based on NSGA-II publication-title: JNW – volume: 37 start-page: 181 year: 2009 end-page: 189 ident: b0005 article-title: When will fossil fuel reserves be diminished? publication-title: Energy Policy – volume: 12 start-page: 1459 year: 2011 end-page: 1500 ident: b0145 article-title: Computationally efficient convolved multiple output gaussian processes publication-title: J Machine Learn Res – volume: 158 start-page: 672 year: 2015 end-page: 683 ident: b0070 article-title: Using a genetic algorithm and CFD to identify low NOx configurations in an industrial boiler publication-title: Fuel – volume: 89 start-page: 2977 year: 2010 end-page: 2984 ident: b0060 article-title: Estimation of NOx emissions from coal-fired utility boilers publication-title: Fuel – start-page: 329 year: 2001 end-page: 343 ident: b0165 article-title: Evolutionary multi-objective ranking with uncertainty and noise publication-title: Proceedings of first international conference on evolutionary multi-criterion optimization – reference: ; Since 2012. – volume: 88 start-page: 1720 year: 2009 end-page: 1731 ident: b0050 article-title: Numerical investigation on the flow, combustion and Nox emission characteristics in a 500mwe tangentially fired pulverized-coal boiler publication-title: Fuel – reference: Knowles J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the international conference on intelligent systems design and applications, ISDA ’05; 2005. p. 552–7. – volume: 88 start-page: 806 year: 2009 end-page: 816 ident: b0100 article-title: Optimization of coal-fired boiler {SCRs} based on modified support vector machine models and genetic algorithms publication-title: Fuel – volume: vol. 1141 start-page: 584 year: 1996 end-page: 593 ident: b0195 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers publication-title: Parallel problem solving from nature - PPSN IV – volume: 88 start-page: 1864 year: 2009 end-page: 1870 ident: b0075 article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers publication-title: Fuel – volume: 12 start-page: 439 year: 2008 end-page: 457 ident: b0090 article-title: Abyss: Adapting scatter search to multiobjective optimization publication-title: IEEE Trans Evol Comput – volume: 24 start-page: 859 year: 1992 end-page: 878 ident: b0020 article-title: Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation publication-title: Symp (Int) Combust – volume: 7 start-page: 305 year: 2003 end-page: 323 ident: b0175 article-title: Using unconstrained elite archives for multiobjective optimization publication-title: IEEE Trans Evol Comput – year: 2006 ident: b0125 article-title: Gaussian processes for machine learning – volume: 181 start-page: 1653 year: 2007 end-page: 1669 ident: b0190 article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume publication-title: Eur J Oper Res – ident: 10.1016/j.apenergy.2018.07.101_b0170 doi: 10.1109/CEC.2005.1554691 – volume: 88 start-page: 806 issue: 5 year: 2009 ident: 10.1016/j.apenergy.2018.07.101_b0100 article-title: Optimization of coal-fired boiler {SCRs} based on modified support vector machine models and genetic algorithms publication-title: Fuel doi: 10.1016/j.fuel.2008.10.038 – ident: 10.1016/j.apenergy.2018.07.101_b0010 – volume: 88 start-page: 1720 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2018.07.101_b0050 article-title: Numerical investigation on the flow, combustion and Nox emission characteristics in a 500mwe tangentially fired pulverized-coal boiler publication-title: Fuel doi: 10.1016/j.fuel.2009.04.001 – volume: 55 start-page: 1367 issue: 9 year: 2005 ident: 10.1016/j.apenergy.2018.07.101_b0035 article-title: Nitrogen oxides emission control options for coal-fired electric utility boilers publication-title: J Air Waste Management Assoc doi: 10.1080/10473289.2005.10464736 – volume: 158 start-page: 672 year: 2015 ident: 10.1016/j.apenergy.2018.07.101_b0070 article-title: Using a genetic algorithm and CFD to identify low NOx configurations in an industrial boiler publication-title: Fuel doi: 10.1016/j.fuel.2015.06.021 – volume: 4 start-page: 1 issue: 1 year: 1985 ident: 10.1016/j.apenergy.2018.07.101_b0135 article-title: Exponential smoothing: the state of the art publication-title: J Forecast doi: 10.1002/for.3980040103 – volume: 88 start-page: 1864 issue: 10 year: 2009 ident: 10.1016/j.apenergy.2018.07.101_b0075 article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers publication-title: Fuel doi: 10.1016/j.fuel.2009.04.023 – volume: vol. 1141 start-page: 584 year: 1996 ident: 10.1016/j.apenergy.2018.07.101_b0195 article-title: On the performance assessment and comparison of stochastic multiobjective optimizers – volume: 8 start-page: 1300 year: 2013 ident: 10.1016/j.apenergy.2018.07.101_b0110 article-title: Multi-objective optimization of coal-fired boiler combustion based on NSGA-II publication-title: JNW doi: 10.4304/jnw.8.6.1300-1306 – ident: 10.1016/j.apenergy.2018.07.101_b0200 doi: 10.1109/ISDA.2005.15 – ident: 10.1016/j.apenergy.2018.07.101_b0185 – volume: 42 start-page: 8442 issue: 36 year: 2008 ident: 10.1016/j.apenergy.2018.07.101_b0015 article-title: Primary air pollutant emissions of coal-fired power plants in china: Current status and future prediction publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.08.021 – start-page: 1377 year: 2004 ident: 10.1016/j.apenergy.2018.07.101_b0180 article-title: Topological interpretation of crossover – volume: 12 start-page: 439 issue: 4 year: 2008 ident: 10.1016/j.apenergy.2018.07.101_b0090 article-title: Abyss: Adapting scatter search to multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.913109 – start-page: 849 year: 2000 ident: 10.1016/j.apenergy.2018.07.101_b0105 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – ident: 10.1016/j.apenergy.2018.07.101_b0140 – start-page: 329 year: 2001 ident: 10.1016/j.apenergy.2018.07.101_b0165 article-title: Evolutionary multi-objective ranking with uncertainty and noise – volume: 12 start-page: 1459 issue: May year: 2011 ident: 10.1016/j.apenergy.2018.07.101_b0145 article-title: Computationally efficient convolved multiple output gaussian processes publication-title: J Machine Learn Res – year: 2007 ident: 10.1016/j.apenergy.2018.07.101_b0160 – year: 2018 ident: 10.1016/j.apenergy.2018.07.101_b0115 – volume: 128 start-page: 62 year: 2014 ident: 10.1016/j.apenergy.2018.07.101_b0130 article-title: The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission publication-title: Fuel doi: 10.1016/j.fuel.2014.02.043 – volume: 7 start-page: 19 year: 2015 ident: 10.1016/j.apenergy.2018.07.101_b0055 article-title: Prediction of the unburned carbon content of fly ash in coal-fired power plants publication-title: Coal Combust Gasificat Prod doi: 10.4177/CCGP-D-14-00009.1 – volume: 38 start-page: 7179 issue: 6 year: 2011 ident: 10.1016/j.apenergy.2018.07.101_b0095 article-title: A comparative study of the multi-objective optimization algorithms for coal-fired boilers publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.042 – volume: 24 start-page: 859 issue: 1 year: 1992 ident: 10.1016/j.apenergy.2018.07.101_b0020 article-title: Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation publication-title: Symp (Int) Combust doi: 10.1016/S0082-0784(06)80104-9 – volume: 106 start-page: 89 year: 2013 ident: 10.1016/j.apenergy.2018.07.101_b0025 article-title: Multi-step-ahead prediction of NOx emissions for a coal-based boiler publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.10.056 – volume: 29 start-page: 515 issue: 6 year: 2003 ident: 10.1016/j.apenergy.2018.07.101_b0120 article-title: Artificial intelligence for the modeling and control of combustion processes: a review publication-title: Prog Energy Combust Sci doi: 10.1016/S0360-1285(03)00058-3 – year: 2001 ident: 10.1016/j.apenergy.2018.07.101_b0155 – volume: 86 start-page: 1797 issue: 9 year: 2009 ident: 10.1016/j.apenergy.2018.07.101_b0045 article-title: NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.12.032 – volume: 29 start-page: 499 issue: 6 year: 2005 ident: 10.1016/j.apenergy.2018.07.101_b0040 article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms publication-title: Int J Energy Res doi: 10.1002/er.1070 – start-page: 505 year: 2005 ident: 10.1016/j.apenergy.2018.07.101_b0085 article-title: Improving pso-based multi-objective optimization using crowding, mutation and ∊-dominance – ident: 10.1016/j.apenergy.2018.07.101_b0030 – volume: 7 start-page: 305 issue: 3 year: 2003 ident: 10.1016/j.apenergy.2018.07.101_b0175 article-title: Using unconstrained elite archives for multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810733 – volume: 236 start-page: 573 issue: 2 year: 2014 ident: 10.1016/j.apenergy.2018.07.101_b0150 article-title: Multivariate versus univariate kriging metamodels for multi-response simulation models publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2014.02.001 – volume: 89 start-page: 2977 issue: 10 year: 2010 ident: 10.1016/j.apenergy.2018.07.101_b0060 article-title: Estimation of NOx emissions from coal-fired utility boilers publication-title: Fuel doi: 10.1016/j.fuel.2010.05.008 – volume: 108 start-page: 586 year: 2013 ident: 10.1016/j.apenergy.2018.07.101_b0065 article-title: Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using rans-based computational fluid dynamics publication-title: Fuel doi: 10.1016/j.fuel.2012.11.006 – volume: 181 start-page: 1653 issue: 3 year: 2007 ident: 10.1016/j.apenergy.2018.07.101_b0190 article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.08.008 – year: 2006 ident: 10.1016/j.apenergy.2018.07.101_b0125 – volume: 37 start-page: 181 issue: 1 year: 2009 ident: 10.1016/j.apenergy.2018.07.101_b0005 article-title: When will fossil fuel reserves be diminished? publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.016 – ident: 10.1016/j.apenergy.2018.07.101_b0080 |
| SSID | ssj0002120 |
| Score | 2.5128994 |
| Snippet | •Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC... Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 446 |
| SubjectTerms | algorithms China coal Coal combustion optimisation combustion data collection emissions energy Evolutionary multi-objective optimization under uncertainty Gaussian processes laws and regulations nitrogen oxides NOx pollutants power plants prediction Probabilistic dominance Unburned carbon content in fly ash uncertainty |
| Title | Data-driven multi-objective optimisation of coal-fired boiler combustion systems |
| URI | https://dx.doi.org/10.1016/j.apenergy.2018.07.101 https://www.proquest.com/docview/2116880819 https://www.proquest.com/docview/2153619438 |
| Volume | 229 |
| WOSCitedRecordID | wos000449891500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHCQYTY4CChLhULnXixPaxbKkAlXaHgnqz_BVtVZeUfkz787ETpwnTYOPAJYqs2In8fnl-fn7v9wB4TxIS4owgqGNBITaaQRGFEQwTifqKKBmVJ7o_RmQ8prMZO_NVOtdlOQGS5_T6mi3_q6htmxW2S539B3HvBrUN9t4K3V6t2O31XoI_FRsBT1dOi3XL9Fo4kfNKrXUnVkFc-gCeMhCjEAs4vHAx6J8Kqx9WTj9IV-DLqZEWmXnNU-ttVlNmDDZnROeiYi9YXIruoPet17jpK1Vycr51jBw7sLiwudqnXfvvm5yI9KrcBrTy_r3P1nsnEPVpeo0Ss1sS6HZpt6rrynMw74ll9d0u1I46MlXkx_iNH3s84cPvoxGfprPph-VP6EqHuSN2X0flIdgLScxoB-wNvqSzr7sFOfTsnPWntBLFb3_1n2yUG6t1aYJMn4J9v3cIBpXMn4EHJj8AT1qMkgfgMG0SF-2jXnOvn4OzFiyCG7AI2rAIiixoYBFUsAgaWAQeFi_AdJhOTz5DX00DKozIBhqmFJGSJlgJTHCW9LPQYK1ZQjSJEy3sjYlRpEWskDVrYpQxQpXERtlfWEaHoJMXuXkJAqF0JkNtWKJDnDDH8SiRQMyQyK67DB-BuJ4-rjzTvCt4suB1SOGc19PO3bTzPnHtR-Djrt-y4lq5swerpcO9xVhZgtwi7M6-72pxcjvF7pxM5KbYrnmIUEJdRRr2t2fiyDkAI_rqHuMcg8fNz_EadDarrXkDHqmrzcV69dbj9ReVGacJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Multi-Objective+Optimisation+of+Coal-Fired+Boiler+Combustion+Systems&rft.jtitle=Applied+energy&rft.au=Rahat%2C+Alma+A.M.&rft.au=Wang%2C+Chunlin&rft.au=Fieldsend%2C+Jonathan+E&rft.au=Everson%2C+Richard+M&rft.date=2018-11-01&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2018.07.101&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |