Data-driven multi-objective optimisation of coal-fired boiler combustion systems

•Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied energy Ročník 229; s. 446 - 458
Hlavní autori: Rahat, Alma A.M., Wang, Chunlin, Everson, Richard M., Fieldsend, Jonathan E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2018
Predmet:
ISSN:0306-2619, 1872-9118
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need for repeated optimisation.•Methods are demonstrated on the data collected from Jianbi power plant, China. Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located.
AbstractList Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located.
•Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC trade-off.•Novel solution selection method based on maximum probability of dominance.•Optimisation for all load demands in a single run: no need for repeated optimisation.•Methods are demonstrated on the data collected from Jianbi power plant, China. Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a boiler, are subject to strict legislation due to their damaging effects on the environment. Optimising combustion parameters to achieve a lower NOx emission often results in combustion inefficiency measured with the proportion of unburned coal content (UBC). Consequently there is a range of solutions that trade-off efficiency for emissions. Generally, an analytical model for NOx emission or UBC is unavailable, and therefore data-driven models are used to optimise this multi-objective problem. We introduce the use of Gaussian process models to capture the uncertainties in NOx and UBC predictions arising from measurement error and data scarcity. A novel evolutionary multi-objective search algorithm is used to discover the probabilistic trade-off front between NOx and UBC, and we describe a new procedure for selecting parameters yielding the desired performance. We discuss the variation of operating parameters along the trade-off front. We give a novel algorithm for discovering the optimal trade-off for all load demands simultaneously. The methods are demonstrated on data collected from a boiler in Jianbi power plant, China, and we show that a wide range of solutions trading-off NOx and efficiency may be efficiently located.
Author Wang, Chunlin
Rahat, Alma A.M.
Everson, Richard M.
Fieldsend, Jonathan E.
Author_xml – sequence: 1
  givenname: Alma A.M.
  surname: Rahat
  fullname: Rahat, Alma A.M.
  email: A.A.M.Rahat@exeter.ac.uk
  organization: Department of Computer Science, University of Exeter, UK
– sequence: 2
  givenname: Chunlin
  surname: Wang
  fullname: Wang, Chunlin
  organization: Hangzhou Dianzi University, China
– sequence: 3
  givenname: Richard M.
  surname: Everson
  fullname: Everson, Richard M.
  organization: Department of Computer Science, University of Exeter, UK
– sequence: 4
  givenname: Jonathan E.
  surname: Fieldsend
  fullname: Fieldsend, Jonathan E.
  organization: Department of Computer Science, University of Exeter, UK
BookMark eNqNkE1LAzEQhoNUsFb_guzRy9bMfiRZ8KD4DQU9eA_ZZFZSdjc1SQv996ZWL17qaYZ33neYeU7JZHQjEnIBdA4U2NVyrlY4ov_YzgsKYk75Tj8iUxC8yBsAMSFTWlKWFwyaE3IawpJSWkBBp-TtXkWVG283OGbDuo82d-0SdUxC5lbRDjaoaN2YuS7TTvV5Zz2arHW2R5-UoV2H73nYhohDOCPHneoDnv_UGXl_fHi_e84Xr08vd7eLXFfAY46N1rxtBau0qnjVMdoVWBnTMG54zYxKDdZQGlVrKFlRQ9dwodsKdYWmLWfkcr925d3nGkOU6VCNfa9GdOsgC6jL9G1Vin9YgQlBBTTJyvZW7V0IHju58nZQfiuByh1suZS_sOUOtqR8p6fg9Z-gtvGbW_TK9ofjN_s4JmIbi14GbXHUaBJsHaVx9tCKL6HBo5E
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_136060
crossref_primary_10_1016_j_fuel_2022_126854
crossref_primary_10_1016_j_fuel_2022_125921
crossref_primary_10_1016_j_asoc_2024_111325
crossref_primary_10_1016_j_energy_2022_123551
crossref_primary_10_1109_TEVC_2022_3154231
crossref_primary_10_1016_j_jocs_2024_102307
crossref_primary_10_1016_j_apenergy_2019_113448
crossref_primary_10_1016_j_chemolab_2019_103870
crossref_primary_10_1016_j_fuel_2021_120439
crossref_primary_10_1016_j_energy_2025_136765
crossref_primary_10_1016_j_apenergy_2020_115339
crossref_primary_10_1016_j_energy_2023_128165
crossref_primary_10_1016_j_energy_2024_132106
crossref_primary_10_1016_j_eswa_2022_118531
crossref_primary_10_1016_j_fuel_2020_117360
crossref_primary_10_3390_buildings13092125
crossref_primary_10_1088_1742_6596_2003_1_012003
crossref_primary_10_1016_j_energy_2021_119912
crossref_primary_10_1016_j_energy_2025_136735
crossref_primary_10_21496_ams_2023_008
crossref_primary_10_1016_j_energy_2024_130432
crossref_primary_10_1016_j_energy_2024_132495
crossref_primary_10_1016_j_apenergy_2020_115745
crossref_primary_10_1088_1742_6596_3086_1_012012
crossref_primary_10_3390_catal12020141
crossref_primary_10_1016_j_heliyon_2024_e40741
crossref_primary_10_1016_j_energy_2023_128748
crossref_primary_10_3390_pr11102889
crossref_primary_10_3390_su12104171
crossref_primary_10_3390_en16155674
crossref_primary_10_3390_en16217409
crossref_primary_10_1002_ente_202100045
crossref_primary_10_1016_j_tsep_2025_103716
crossref_primary_10_3390_en15239076
crossref_primary_10_1016_j_combustflame_2023_113184
crossref_primary_10_1007_s11814_020_0478_5
crossref_primary_10_1080_00102202_2023_2164917
crossref_primary_10_1109_ACCESS_2024_3372660
crossref_primary_10_1002_ep_14059
crossref_primary_10_1016_j_ifacol_2022_07_501
crossref_primary_10_1016_j_engappai_2024_107869
crossref_primary_10_1016_j_energy_2019_116589
crossref_primary_10_3390_biomimetics9110717
crossref_primary_10_1002_cjce_24658
crossref_primary_10_1016_j_apenergy_2023_121800
crossref_primary_10_1016_j_eswa_2023_121783
crossref_primary_10_1016_j_energy_2024_130270
crossref_primary_10_1016_j_compchemeng_2022_107913
Cites_doi 10.1109/CEC.2005.1554691
10.1016/j.fuel.2008.10.038
10.1016/j.fuel.2009.04.001
10.1080/10473289.2005.10464736
10.1016/j.fuel.2015.06.021
10.1002/for.3980040103
10.1016/j.fuel.2009.04.023
10.4304/jnw.8.6.1300-1306
10.1109/ISDA.2005.15
10.1016/j.atmosenv.2008.08.021
10.1109/TEVC.2007.913109
10.1016/j.fuel.2014.02.043
10.4177/CCGP-D-14-00009.1
10.1016/j.eswa.2010.12.042
10.1016/S0082-0784(06)80104-9
10.1016/j.apenergy.2012.10.056
10.1016/S0360-1285(03)00058-3
10.1016/j.apenergy.2008.12.032
10.1002/er.1070
10.1109/TEVC.2003.810733
10.1016/j.ejor.2014.02.001
10.1016/j.fuel.2010.05.008
10.1016/j.fuel.2012.11.006
10.1016/j.ejor.2006.08.008
10.1016/j.enpol.2008.08.016
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2018.07.101
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 458
ExternalDocumentID 10_1016_j_apenergy_2018_07_101
S030626191831136X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c417t-e9cc7bb864ca474f60f2e4dd967d756da967e513da5c136251f978cb4ec4edb3
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449891500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sun Nov 09 11:35:27 EST 2025
Thu Oct 02 09:59:34 EDT 2025
Sat Nov 29 07:19:41 EST 2025
Tue Nov 18 21:56:16 EST 2025
Fri Feb 23 02:47:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Probabilistic dominance
Evolutionary multi-objective optimization under uncertainty
NOx
Coal combustion optimisation
Gaussian processes
Unburned carbon content in fly ash
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-e9cc7bb864ca474f60f2e4dd967d756da967e513da5c136251f978cb4ec4edb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116880819
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2153619438
proquest_miscellaneous_2116880819
crossref_primary_10_1016_j_apenergy_2018_07_101
crossref_citationtrail_10_1016_j_apenergy_2018_07_101
elsevier_sciencedirect_doi_10_1016_j_apenergy_2018_07_101
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nebro, Luna, Alba, Dorronsoro, Durillo, Beham (b0090) 2008; 12
Li, Xu, Hui, Wei (b0045) 2009; 86
Smrekar, Potonik, Seneganik (b0025) 2013; 106
Wu, Zhou, Ren, Zheng, Cen (b0075) 2009; 88
Zhao, Wang, Duan, Lei, Cao, Hao (b0015) 2008; 42
Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH Zurich, Switzerland; 1999.
Moraglio, Poli (b0180) 2004
Deb (b0155) 2001
Wu, Zhou, Zhao, Cen (b0095) 2011; 38
Rasmussen, Williams (b0125) 2006
Bowman (b0020) 1992; 24
Zhou, Cen, Fan (b0040) 2005; 29
Alvarez, Lawrence (b0145) 2011; 12
Beume, Naujoks, Emmerich (b0190) 2007; 181
Shafiee, Topal (b0005) 2009; 37
Yu, Zhu, Peng (b0110) 2013; 8
Kalogirou (b0120) 2003; 29
Dal Secco, Juan, Louis-Louisy, Lucas, Plion, Porcheron (b0070) 2015; 158
Hughes (b0165) 2001
Fonseca, Fleming (b0195) 1996; vol. 1141
Zhou, Cen (b0115) 2018
GPy. GPy: A gaussian process framework in python
Since 2012.
Fieldsend JE, Everson RM. Multi-objective optimisation in the presence of uncertainty. In: IEEE congress on evolutionary computation, vol. 1 of CEC ’05; 2005. p. 243–50.
Kleijnen, Mehdad (b0150) 2014; 236
WHO. Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization (WHO); 2006.
Choi, Kim (b0050) 2009; 88
Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. TIK-report 103; 2001.
Dindarloo, Hower (b0055) 2015; 7
Gardner (b0135) 1985; 4
Weber, Schaffel-Mancini, Mancini, Kupka (b0065) 2013; 108
Sierra, Coello (b0085) 2005
Si, Romero, Yao, Schuster, Xu, Morey (b0100) 2009; 88
Chui, Gao (b0060) 2010; 89
Coello Coello, Lamont, Veldhuizen (b0160) 2007
Deb, Agrawal, Pratap, Meyarivan (b0105) 2000
Knowles J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the international conference on intelligent systems design and applications, ISDA ’05; 2005. p. 552–7.
Fieldsend, Everson, Singh (b0175) 2003; 7
Moretti AL, Jones CS, Asia P-G. Advanced emissions control technologies for coal-fired power plants. Babcock & Wilcox Power Generation Group; BR-1886.
Baek, Park, Ko (b0130) 2014; 128
Srivastava, Hall, Khan, Culligan, Lani (b0035) 2005; 55
Dal Secco (10.1016/j.apenergy.2018.07.101_b0070) 2015; 158
Srivastava (10.1016/j.apenergy.2018.07.101_b0035) 2005; 55
Yu (10.1016/j.apenergy.2018.07.101_b0110) 2013; 8
Smrekar (10.1016/j.apenergy.2018.07.101_b0025) 2013; 106
Weber (10.1016/j.apenergy.2018.07.101_b0065) 2013; 108
Hughes (10.1016/j.apenergy.2018.07.101_b0165) 2001
Dindarloo (10.1016/j.apenergy.2018.07.101_b0055) 2015; 7
Nebro (10.1016/j.apenergy.2018.07.101_b0090) 2008; 12
Rasmussen (10.1016/j.apenergy.2018.07.101_b0125) 2006
Deb (10.1016/j.apenergy.2018.07.101_b0105) 2000
Kleijnen (10.1016/j.apenergy.2018.07.101_b0150) 2014; 236
Deb (10.1016/j.apenergy.2018.07.101_b0155) 2001
Zhao (10.1016/j.apenergy.2018.07.101_b0015) 2008; 42
10.1016/j.apenergy.2018.07.101_b0140
Fieldsend (10.1016/j.apenergy.2018.07.101_b0175) 2003; 7
Zhou (10.1016/j.apenergy.2018.07.101_b0040) 2005; 29
10.1016/j.apenergy.2018.07.101_b0185
Bowman (10.1016/j.apenergy.2018.07.101_b0020) 1992; 24
10.1016/j.apenergy.2018.07.101_b0080
Wu (10.1016/j.apenergy.2018.07.101_b0095) 2011; 38
Baek (10.1016/j.apenergy.2018.07.101_b0130) 2014; 128
Choi (10.1016/j.apenergy.2018.07.101_b0050) 2009; 88
Alvarez (10.1016/j.apenergy.2018.07.101_b0145) 2011; 12
Coello Coello (10.1016/j.apenergy.2018.07.101_b0160) 2007
Li (10.1016/j.apenergy.2018.07.101_b0045) 2009; 86
Shafiee (10.1016/j.apenergy.2018.07.101_b0005) 2009; 37
10.1016/j.apenergy.2018.07.101_b0200
Zhou (10.1016/j.apenergy.2018.07.101_b0115) 2018
Gardner (10.1016/j.apenergy.2018.07.101_b0135) 1985; 4
Fonseca (10.1016/j.apenergy.2018.07.101_b0195) 1996; vol. 1141
Sierra (10.1016/j.apenergy.2018.07.101_b0085) 2005
Si (10.1016/j.apenergy.2018.07.101_b0100) 2009; 88
Wu (10.1016/j.apenergy.2018.07.101_b0075) 2009; 88
Kalogirou (10.1016/j.apenergy.2018.07.101_b0120) 2003; 29
Chui (10.1016/j.apenergy.2018.07.101_b0060) 2010; 89
10.1016/j.apenergy.2018.07.101_b0030
10.1016/j.apenergy.2018.07.101_b0010
Beume (10.1016/j.apenergy.2018.07.101_b0190) 2007; 181
10.1016/j.apenergy.2018.07.101_b0170
Moraglio (10.1016/j.apenergy.2018.07.101_b0180) 2004
References_xml – volume: 38
  start-page: 7179
  year: 2011
  end-page: 7185
  ident: b0095
  article-title: A comparative study of the multi-objective optimization algorithms for coal-fired boilers
  publication-title: Expert Syst Appl
– volume: 29
  start-page: 515
  year: 2003
  end-page: 566
  ident: b0120
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energy Combust Sci
– volume: 108
  start-page: 586
  year: 2013
  end-page: 596
  ident: b0065
  article-title: Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using rans-based computational fluid dynamics
  publication-title: Fuel
– volume: 236
  start-page: 573
  year: 2014
  end-page: 582
  ident: b0150
  article-title: Multivariate versus univariate kriging metamodels for multi-response simulation models
  publication-title: Eur J Oper Res
– start-page: 505
  year: 2005
  end-page: 519
  ident: b0085
  article-title: Improving pso-based multi-objective optimization using crowding, mutation and
  publication-title: International conference on evolutionary multi-criterion optimization
– reference: WHO. Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization (WHO); 2006.
– volume: 4
  start-page: 1
  year: 1985
  end-page: 28
  ident: b0135
  article-title: Exponential smoothing: the state of the art
  publication-title: J Forecast
– reference: GPy. GPy: A gaussian process framework in python,
– volume: 86
  start-page: 1797
  year: 2009
  end-page: 1803
  ident: b0045
  article-title: NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging
  publication-title: Appl Energy
– reference: Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Ph.D. thesis, ETH Zurich, Switzerland; 1999.
– volume: 106
  start-page: 89
  year: 2013
  end-page: 99
  ident: b0025
  article-title: Multi-step-ahead prediction of NOx emissions for a coal-based boiler
  publication-title: Appl Energy
– year: 2018
  ident: b0115
  article-title: Combustion optimization based on computational intelligence, advanced topics in science and technology in China
– reference: Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength pareto evolutionary algorithm. TIK-report 103; 2001.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  ident: b0055
  article-title: Prediction of the unburned carbon content of fly ash in coal-fired power plants
  publication-title: Coal Combust Gasificat Prod
– start-page: 1377
  year: 2004
  end-page: 1388
  ident: b0180
  article-title: Topological interpretation of crossover
  publication-title: Genetic and evolutionary computation – GECCO 2004
– year: 2001
  ident: b0155
  article-title: Multi-objective optimization using evolutionary algorithms
– volume: 42
  start-page: 8442
  year: 2008
  end-page: 8452
  ident: b0015
  article-title: Primary air pollutant emissions of coal-fired power plants in china: Current status and future prediction
  publication-title: Atmos Environ
– volume: 128
  start-page: 62
  year: 2014
  end-page: 70
  ident: b0130
  article-title: The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission
  publication-title: Fuel
– reference: Moretti AL, Jones CS, Asia P-G. Advanced emissions control technologies for coal-fired power plants. Babcock & Wilcox Power Generation Group; BR-1886.
– year: 2007
  ident: b0160
  article-title: Evolutionary algorithms for solving multi-objective problems
– reference: Fieldsend JE, Everson RM. Multi-objective optimisation in the presence of uncertainty. In: IEEE congress on evolutionary computation, vol. 1 of CEC ’05; 2005. p. 243–50.
– start-page: 849
  year: 2000
  end-page: 858
  ident: b0105
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Proceedings of parallel problem solving from nature – PPSN VI
– volume: 29
  start-page: 499
  year: 2005
  end-page: 510
  ident: b0040
  article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms
  publication-title: Int J Energy Res
– volume: 55
  start-page: 1367
  year: 2005
  end-page: 1388
  ident: b0035
  article-title: Nitrogen oxides emission control options for coal-fired electric utility boilers
  publication-title: J Air Waste Management Assoc
– volume: 8
  start-page: 1300
  year: 2013
  end-page: 1306
  ident: b0110
  article-title: Multi-objective optimization of coal-fired boiler combustion based on NSGA-II
  publication-title: JNW
– volume: 37
  start-page: 181
  year: 2009
  end-page: 189
  ident: b0005
  article-title: When will fossil fuel reserves be diminished?
  publication-title: Energy Policy
– volume: 12
  start-page: 1459
  year: 2011
  end-page: 1500
  ident: b0145
  article-title: Computationally efficient convolved multiple output gaussian processes
  publication-title: J Machine Learn Res
– volume: 158
  start-page: 672
  year: 2015
  end-page: 683
  ident: b0070
  article-title: Using a genetic algorithm and CFD to identify low NOx configurations in an industrial boiler
  publication-title: Fuel
– volume: 89
  start-page: 2977
  year: 2010
  end-page: 2984
  ident: b0060
  article-title: Estimation of NOx emissions from coal-fired utility boilers
  publication-title: Fuel
– start-page: 329
  year: 2001
  end-page: 343
  ident: b0165
  article-title: Evolutionary multi-objective ranking with uncertainty and noise
  publication-title: Proceedings of first international conference on evolutionary multi-criterion optimization
– reference: ; Since 2012.
– volume: 88
  start-page: 1720
  year: 2009
  end-page: 1731
  ident: b0050
  article-title: Numerical investigation on the flow, combustion and Nox emission characteristics in a 500mwe tangentially fired pulverized-coal boiler
  publication-title: Fuel
– reference: Knowles J. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Proceedings of the international conference on intelligent systems design and applications, ISDA ’05; 2005. p. 552–7.
– volume: 88
  start-page: 806
  year: 2009
  end-page: 816
  ident: b0100
  article-title: Optimization of coal-fired boiler {SCRs} based on modified support vector machine models and genetic algorithms
  publication-title: Fuel
– volume: vol. 1141
  start-page: 584
  year: 1996
  end-page: 593
  ident: b0195
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
  publication-title: Parallel problem solving from nature - PPSN IV
– volume: 88
  start-page: 1864
  year: 2009
  end-page: 1870
  ident: b0075
  article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers
  publication-title: Fuel
– volume: 12
  start-page: 439
  year: 2008
  end-page: 457
  ident: b0090
  article-title: Abyss: Adapting scatter search to multiobjective optimization
  publication-title: IEEE Trans Evol Comput
– volume: 24
  start-page: 859
  year: 1992
  end-page: 878
  ident: b0020
  article-title: Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation
  publication-title: Symp (Int) Combust
– volume: 7
  start-page: 305
  year: 2003
  end-page: 323
  ident: b0175
  article-title: Using unconstrained elite archives for multiobjective optimization
  publication-title: IEEE Trans Evol Comput
– year: 2006
  ident: b0125
  article-title: Gaussian processes for machine learning
– volume: 181
  start-page: 1653
  year: 2007
  end-page: 1669
  ident: b0190
  article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume
  publication-title: Eur J Oper Res
– ident: 10.1016/j.apenergy.2018.07.101_b0170
  doi: 10.1109/CEC.2005.1554691
– volume: 88
  start-page: 806
  issue: 5
  year: 2009
  ident: 10.1016/j.apenergy.2018.07.101_b0100
  article-title: Optimization of coal-fired boiler {SCRs} based on modified support vector machine models and genetic algorithms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.10.038
– ident: 10.1016/j.apenergy.2018.07.101_b0010
– volume: 88
  start-page: 1720
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2018.07.101_b0050
  article-title: Numerical investigation on the flow, combustion and Nox emission characteristics in a 500mwe tangentially fired pulverized-coal boiler
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.04.001
– volume: 55
  start-page: 1367
  issue: 9
  year: 2005
  ident: 10.1016/j.apenergy.2018.07.101_b0035
  article-title: Nitrogen oxides emission control options for coal-fired electric utility boilers
  publication-title: J Air Waste Management Assoc
  doi: 10.1080/10473289.2005.10464736
– volume: 158
  start-page: 672
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.101_b0070
  article-title: Using a genetic algorithm and CFD to identify low NOx configurations in an industrial boiler
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.021
– volume: 4
  start-page: 1
  issue: 1
  year: 1985
  ident: 10.1016/j.apenergy.2018.07.101_b0135
  article-title: Exponential smoothing: the state of the art
  publication-title: J Forecast
  doi: 10.1002/for.3980040103
– volume: 88
  start-page: 1864
  issue: 10
  year: 2009
  ident: 10.1016/j.apenergy.2018.07.101_b0075
  article-title: Combining support vector regression and cellular genetic algorithm for multi-objective optimization of coal-fired utility boilers
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.04.023
– volume: vol. 1141
  start-page: 584
  year: 1996
  ident: 10.1016/j.apenergy.2018.07.101_b0195
  article-title: On the performance assessment and comparison of stochastic multiobjective optimizers
– volume: 8
  start-page: 1300
  year: 2013
  ident: 10.1016/j.apenergy.2018.07.101_b0110
  article-title: Multi-objective optimization of coal-fired boiler combustion based on NSGA-II
  publication-title: JNW
  doi: 10.4304/jnw.8.6.1300-1306
– ident: 10.1016/j.apenergy.2018.07.101_b0200
  doi: 10.1109/ISDA.2005.15
– ident: 10.1016/j.apenergy.2018.07.101_b0185
– volume: 42
  start-page: 8442
  issue: 36
  year: 2008
  ident: 10.1016/j.apenergy.2018.07.101_b0015
  article-title: Primary air pollutant emissions of coal-fired power plants in china: Current status and future prediction
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2008.08.021
– start-page: 1377
  year: 2004
  ident: 10.1016/j.apenergy.2018.07.101_b0180
  article-title: Topological interpretation of crossover
– volume: 12
  start-page: 439
  issue: 4
  year: 2008
  ident: 10.1016/j.apenergy.2018.07.101_b0090
  article-title: Abyss: Adapting scatter search to multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.913109
– start-page: 849
  year: 2000
  ident: 10.1016/j.apenergy.2018.07.101_b0105
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– ident: 10.1016/j.apenergy.2018.07.101_b0140
– start-page: 329
  year: 2001
  ident: 10.1016/j.apenergy.2018.07.101_b0165
  article-title: Evolutionary multi-objective ranking with uncertainty and noise
– volume: 12
  start-page: 1459
  issue: May
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.101_b0145
  article-title: Computationally efficient convolved multiple output gaussian processes
  publication-title: J Machine Learn Res
– year: 2007
  ident: 10.1016/j.apenergy.2018.07.101_b0160
– year: 2018
  ident: 10.1016/j.apenergy.2018.07.101_b0115
– volume: 128
  start-page: 62
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.101_b0130
  article-title: The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.02.043
– volume: 7
  start-page: 19
  year: 2015
  ident: 10.1016/j.apenergy.2018.07.101_b0055
  article-title: Prediction of the unburned carbon content of fly ash in coal-fired power plants
  publication-title: Coal Combust Gasificat Prod
  doi: 10.4177/CCGP-D-14-00009.1
– volume: 38
  start-page: 7179
  issue: 6
  year: 2011
  ident: 10.1016/j.apenergy.2018.07.101_b0095
  article-title: A comparative study of the multi-objective optimization algorithms for coal-fired boilers
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.042
– volume: 24
  start-page: 859
  issue: 1
  year: 1992
  ident: 10.1016/j.apenergy.2018.07.101_b0020
  article-title: Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation
  publication-title: Symp (Int) Combust
  doi: 10.1016/S0082-0784(06)80104-9
– volume: 106
  start-page: 89
  year: 2013
  ident: 10.1016/j.apenergy.2018.07.101_b0025
  article-title: Multi-step-ahead prediction of NOx emissions for a coal-based boiler
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.10.056
– volume: 29
  start-page: 515
  issue: 6
  year: 2003
  ident: 10.1016/j.apenergy.2018.07.101_b0120
  article-title: Artificial intelligence for the modeling and control of combustion processes: a review
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/S0360-1285(03)00058-3
– year: 2001
  ident: 10.1016/j.apenergy.2018.07.101_b0155
– volume: 86
  start-page: 1797
  issue: 9
  year: 2009
  ident: 10.1016/j.apenergy.2018.07.101_b0045
  article-title: NOx emission and thermal efficiency of a 300MWe utility boiler retrofitted by air staging
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.12.032
– volume: 29
  start-page: 499
  issue: 6
  year: 2005
  ident: 10.1016/j.apenergy.2018.07.101_b0040
  article-title: Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms
  publication-title: Int J Energy Res
  doi: 10.1002/er.1070
– start-page: 505
  year: 2005
  ident: 10.1016/j.apenergy.2018.07.101_b0085
  article-title: Improving pso-based multi-objective optimization using crowding, mutation and ∊-dominance
– ident: 10.1016/j.apenergy.2018.07.101_b0030
– volume: 7
  start-page: 305
  issue: 3
  year: 2003
  ident: 10.1016/j.apenergy.2018.07.101_b0175
  article-title: Using unconstrained elite archives for multiobjective optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.810733
– volume: 236
  start-page: 573
  issue: 2
  year: 2014
  ident: 10.1016/j.apenergy.2018.07.101_b0150
  article-title: Multivariate versus univariate kriging metamodels for multi-response simulation models
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2014.02.001
– volume: 89
  start-page: 2977
  issue: 10
  year: 2010
  ident: 10.1016/j.apenergy.2018.07.101_b0060
  article-title: Estimation of NOx emissions from coal-fired utility boilers
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.05.008
– volume: 108
  start-page: 586
  year: 2013
  ident: 10.1016/j.apenergy.2018.07.101_b0065
  article-title: Fly ash deposition modelling: Requirements for accurate predictions of particle impaction on tubes using rans-based computational fluid dynamics
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.11.006
– volume: 181
  start-page: 1653
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2018.07.101_b0190
  article-title: Sms-emoa: Multiobjective selection based on dominated hypervolume
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.08.008
– year: 2006
  ident: 10.1016/j.apenergy.2018.07.101_b0125
– volume: 37
  start-page: 181
  issue: 1
  year: 2009
  ident: 10.1016/j.apenergy.2018.07.101_b0005
  article-title: When will fossil fuel reserves be diminished?
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.08.016
– ident: 10.1016/j.apenergy.2018.07.101_b0080
SSID ssj0002120
Score 2.5128994
Snippet •Quantification of predictive uncertainty in data-driven models of power plants.•Multi-objective optimisation under uncertainty to find optimal NOx and UBC...
Coal remains an important energy source. Nonetheless, pollutant emissions – in particular Oxides of Nitrogen (NOx) – as a result of the combustion process in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 446
SubjectTerms algorithms
China
coal
Coal combustion optimisation
combustion
data collection
emissions
energy
Evolutionary multi-objective optimization under uncertainty
Gaussian processes
laws and regulations
nitrogen oxides
NOx
pollutants
power plants
prediction
Probabilistic dominance
Unburned carbon content in fly ash
uncertainty
Title Data-driven multi-objective optimisation of coal-fired boiler combustion systems
URI https://dx.doi.org/10.1016/j.apenergy.2018.07.101
https://www.proquest.com/docview/2116880819
https://www.proquest.com/docview/2153619438
Volume 229
WOSCitedRecordID wos000449891500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wCHCQYTY4CChLhULnXixPaxbKkAlXaHgnqz_BVtVZeUfkz787ETpwnTYOPAJYqs2In8fnl-fn7v9wB4TxIS4owgqGNBITaaQRGFEQwTifqKKBmVJ7o_RmQ8prMZO_NVOtdlOQGS5_T6mi3_q6htmxW2S539B3HvBrUN9t4K3V6t2O31XoI_FRsBT1dOi3XL9Fo4kfNKrXUnVkFc-gCeMhCjEAs4vHAx6J8Kqx9WTj9IV-DLqZEWmXnNU-ttVlNmDDZnROeiYi9YXIruoPet17jpK1Vycr51jBw7sLiwudqnXfvvm5yI9KrcBrTy_r3P1nsnEPVpeo0Ss1sS6HZpt6rrynMw74ll9d0u1I46MlXkx_iNH3s84cPvoxGfprPph-VP6EqHuSN2X0flIdgLScxoB-wNvqSzr7sFOfTsnPWntBLFb3_1n2yUG6t1aYJMn4J9v3cIBpXMn4EHJj8AT1qMkgfgMG0SF-2jXnOvn4OzFiyCG7AI2rAIiixoYBFUsAgaWAQeFi_AdJhOTz5DX00DKozIBhqmFJGSJlgJTHCW9LPQYK1ZQjSJEy3sjYlRpEWskDVrYpQxQpXERtlfWEaHoJMXuXkJAqF0JkNtWKJDnDDH8SiRQMyQyK67DB-BuJ4-rjzTvCt4suB1SOGc19PO3bTzPnHtR-Djrt-y4lq5swerpcO9xVhZgtwi7M6-72pxcjvF7pxM5KbYrnmIUEJdRRr2t2fiyDkAI_rqHuMcg8fNz_EadDarrXkDHqmrzcV69dbj9ReVGacJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Multi-Objective+Optimisation+of+Coal-Fired+Boiler+Combustion+Systems&rft.jtitle=Applied+energy&rft.au=Rahat%2C+Alma+A.M.&rft.au=Wang%2C+Chunlin&rft.au=Fieldsend%2C+Jonathan+E&rft.au=Everson%2C+Richard+M&rft.date=2018-11-01&rft.issn=0306-2619&rft_id=info:doi/10.1016%2Fj.apenergy.2018.07.101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon