The Quest for the Ultimate Anisotropic Banach Space
We present a new scale U p t , s ( s < - t < 0 and 1 ≤ p < ∞ ) of anisotropic Banach spaces, defined via Paley–Littlewood, on which the transfer operator L g φ = ( g · φ ) ∘ T - 1 associated to a hyperbolic dynamical system T has good spectral properties. When p = 1 and t is an integer, the...
Uloženo v:
| Vydáno v: | Journal of statistical physics Ročník 166; číslo 3-4; s. 525 - 557 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2017
Springer Springer Nature B.V Springer Verlag |
| Edice: | Special Issue: Dedicated to David Ruelle & Yakov Sinai |
| Témata: | |
| ISSN: | 0022-4715, 1572-9613 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present a new scale
U
p
t
,
s
(
s
<
-
t
<
0
and
1
≤
p
<
∞
) of anisotropic Banach spaces, defined via Paley–Littlewood, on which the transfer operator
L
g
φ
=
(
g
·
φ
)
∘
T
-
1
associated to a hyperbolic dynamical system
T
has good spectral properties. When
p
=
1
and
t
is an integer, the spaces are analogous to the “geometric” spaces
B
t
,
|
s
+
t
|
considered by Gouëzel and Liverani (Ergod Theory Dyn Syst 26:189–217,
2006
). When
p
>
1
and
-
1
+
1
/
p
<
s
<
-
t
<
0
<
t
<
1
/
p
, the spaces are somewhat analogous to the geometric spaces considered by Demers and Liverani (Trans Am Math Soc 360:4777–4814,
2008
). In addition, just like for the “microlocal” spaces defined by Baladi and Tsujii (Ann Inst Fourier 57:127–154,
2007
) (or Faure–Roy–Sjöstrand in Open Math J 1:35–81,
2008
), the transfer operator acting on
U
p
t
,
s
can be decomposed into
L
g
,
b
+
L
g
,
c
, where
L
g
,
b
has a controlled norm while a suitable power of
L
g
,
c
is nuclear. This “nuclear power decomposition” enhances the Lasota–Yorke bounds and makes the spaces
U
p
t
,
s
amenable to the kneading approach of Milnor–Thurson (Dynamical Systems (Maryland 1986–1987), Springer, Berlin,
1988
) (as revisited by Baladi–Ruelle, Baladi in Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Monograph,
2016
; Baladi and Ruelle in Ergod Theory Dyn Syst 14:621–632,
1994
; Baladi and Ruelle in Invent Math 123:553–574,
1996
) to study dynamical determinants and zeta functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-4715 1572-9613 |
| DOI: | 10.1007/s10955-016-1663-0 |