Krylov complexity in quantum field theory, and beyond
A bstract We study Krylov complexity in various models of quantum field theory: free massive bosons and fermions on flat space and on spheres, holographic models, and lattice models with a UV-cutoff. In certain cases, we observe asymptotic behavior in Lanczos coefficients that extends beyond the pre...
Saved in:
| Published in: | The journal of high energy physics Vol. 2024; no. 6; pp. 66 - 29 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
12.06.2024
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1029-8479, 1029-8479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A
bstract
We study Krylov complexity in various models of quantum field theory: free massive bosons and fermions on flat space and on spheres, holographic models, and lattice models with a UV-cutoff. In certain cases, we observe asymptotic behavior in Lanczos coefficients that extends beyond the previously observed universality. We confirm that, in all cases, the exponential growth of Krylov complexity satisfies the conjectured inequality, which generalizes the Maldacena-Shenker-Stanford bound on chaos. We discuss the temperature dependence of Lanczos coefficients and note that the relationship between the growth of Lanczos coefficients and chaos may only hold for the sufficiently late, truly asymptotic regime, governed by physics at the UV cutoff. Contrary to previous suggestions, we demonstrate scenarios in which Krylov complexity in quantum field theory behaves qualitatively differently from holographic complexity. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-8479 1029-8479 |
| DOI: | 10.1007/JHEP06(2024)066 |