A three-dimensional self-learning kinetic Monte Carlo model: application to Ag(111)

The reliability of kinetic Monte Carlo (KMC) simulations depends on accurate transition rates. The self-learning KMC method (Trushin et al 2005 Phys. Rev. B 72 115401) combines the accuracy of rates calculated from a realistic potential with the efficiency of a rate catalog, using a pattern recognit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter Jg. 24; H. 48; S. 485005
Hauptverfasser: Latz, Andreas, Brendel, Lothar, Wolf, Dietrich E
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 05.12.2012
ISSN:1361-648X, 1361-648X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reliability of kinetic Monte Carlo (KMC) simulations depends on accurate transition rates. The self-learning KMC method (Trushin et al 2005 Phys. Rev. B 72 115401) combines the accuracy of rates calculated from a realistic potential with the efficiency of a rate catalog, using a pattern recognition scheme. This work expands the original two-dimensional method to three dimensions. The concomitant huge increase in the number of rate calculations on the fly needed can be avoided by setting up an initial database, containing exact activation energies calculated for processes gathered from a simpler KMC model. To provide two representative examples, the model is applied to the diffusion of Ag monolayer islands on Ag(111), and the homoepitaxial growth of Ag on Ag(111) at low temperatures.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1361-648X
1361-648X
DOI:10.1088/0953-8984/24/48/485005