An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking With MARG Sensors in Free-Living Environments
High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to...
Uloženo v:
| Vydáno v: | IEEE transactions on neural systems and rehabilitation engineering Ročník 21; číslo 2; s. 254 - 264 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods. |
|---|---|
| AbstractList | High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods. High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods. |
| Author | Wei, Hongxing Tan, Jindong Tian, Ya |
| Author_xml | – sequence: 1 givenname: Ya surname: Tian fullname: Tian, Ya email: tya@mtu.edu organization: Department of Mechanical, Aerospace and Biomedical Engineering, the University of Tennessee, Knoxville, TN, USA – sequence: 2 givenname: Hongxing surname: Wei fullname: Wei, Hongxing email: weihongxing@buaa.edu.cn organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China – sequence: 3 givenname: Jindong surname: Tan fullname: Tan, Jindong email: tan@utk.edu organization: Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22801527$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk2P0zAQhiO0iP2APwASssSFS4o9jj9yrKq2i9QFqVvEMfImE_CS2MVOivj3OLTLYQ_AaUaj532lmXkvszPnHWbZS0ZnjNHy3e7D7XY5A8pgBkCFovJJdsGE0DkFRs-mnhd5wYGeZ5cx3lPKlBTqWXYOoCkToC6yH3NH5o3ZD_aA-dpYRxa-33fYoxtM-ElWthswkNYHskXT5TvbI7kee-PIjR-sd2QXTP3Nui_ksx2-kpv5dk1u0UUfIkluq4CYb-xhApbuYIN3k3V8nj1tTRfxxaleZZ9Wy93iOt98XL9fzDd5XTA15IBto0vJeWmUobJpWsXLmmuR5lDoIq1tZC01KpBpSKVudaPEHfC2BA2CX2Vvj7774L-PGIeqt7HGrjMO_RgrJhUTTAqAf6M8UVpp8T8ok1RwDTKhbx6h934MLu2cKCiKgqpCJer1iRrvemyqfbB9On_18KgE6CNQBx9jwLaq7WCmBwzB2K5itJoyUf3ORDVlojplIknhkfTB_a-iV0eRRcQ_AglcyULzX4lAvvs |
| CODEN | ITNSB3 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2018_2889320 crossref_primary_10_1016_j_cja_2019_07_021 crossref_primary_10_3390_s20030803 crossref_primary_10_3390_mi14051070 crossref_primary_10_1109_TIM_2018_2869262 crossref_primary_10_1177_1756829318756356 crossref_primary_10_1109_TASE_2015_2471175 crossref_primary_10_1016_j_mechmachtheory_2017_07_018 crossref_primary_10_1155_2017_9560108 crossref_primary_10_3390_s18092944 crossref_primary_10_1109_TASE_2020_2978106 crossref_primary_10_3390_asi4010014 crossref_primary_10_1016_j_measurement_2025_117265 crossref_primary_10_1007_s10846_017_0507_8 crossref_primary_10_1017_S0373463318000231 crossref_primary_10_1088_1742_2140_aadd2f crossref_primary_10_1007_s12555_024_0221_9 crossref_primary_10_1155_2017_8542153 crossref_primary_10_1109_JSEN_2020_3024806 crossref_primary_10_3390_s21072543 crossref_primary_10_1016_j_isatra_2017_12_013 crossref_primary_10_3390_s19061340 crossref_primary_10_1080_21642583_2024_2343303 crossref_primary_10_1109_TIM_2013_2277514 crossref_primary_10_1109_JSEN_2016_2589660 crossref_primary_10_1155_2018_8787236 crossref_primary_10_1088_1361_6501_aae125 crossref_primary_10_1109_TVCG_2024_3464738 crossref_primary_10_3390_s17061257 crossref_primary_10_3390_mi9030113 crossref_primary_10_1109_TIM_2025_3545892 crossref_primary_10_1177_0959651818785840 crossref_primary_10_3390_rs10030377 crossref_primary_10_3390_s150819302 crossref_primary_10_1108_SR_07_2019_0186 crossref_primary_10_1109_JBHI_2018_2795006 crossref_primary_10_1016_j_ast_2017_07_011 crossref_primary_10_1109_TVT_2021_3067659 crossref_primary_10_1016_j_inffus_2020_10_018 crossref_primary_10_1007_s13246_023_01332_6 crossref_primary_10_1109_JSEN_2023_3315849 crossref_primary_10_1186_s12938_016_0291_x crossref_primary_10_1109_TIM_2015_2498998 crossref_primary_10_3390_electronics13122245 crossref_primary_10_3390_s21061937 crossref_primary_10_1109_TIE_2019_2946557 crossref_primary_10_3390_s20226417 crossref_primary_10_3390_s19030451 crossref_primary_10_1109_TBME_2019_2924689 crossref_primary_10_1007_s00779_017_1040_2 crossref_primary_10_1016_j_ast_2018_06_008 crossref_primary_10_1109_JSEN_2017_2787578 crossref_primary_10_1109_TNSRE_2020_2971762 crossref_primary_10_1109_TNNLS_2021_3076060 crossref_primary_10_1371_journal_pone_0161940 crossref_primary_10_1007_s40295_025_00490_x crossref_primary_10_1080_00207179_2025_2537253 crossref_primary_10_1109_ACCESS_2021_3062978 crossref_primary_10_1109_JSEN_2021_3092678 crossref_primary_10_1515_teme_2019_0158 crossref_primary_10_1109_TCE_2018_2859625 crossref_primary_10_1109_TIM_2019_2930437 crossref_primary_10_3389_fphys_2018_00141 crossref_primary_10_1109_TMECH_2017_2698639 crossref_primary_10_3390_s20236752 crossref_primary_10_1109_ACCESS_2024_3482714 crossref_primary_10_1109_JSEN_2022_3193313 crossref_primary_10_1109_TIM_2021_3052026 crossref_primary_10_1016_j_measurement_2019_107046 crossref_primary_10_1109_TASE_2018_2888908 crossref_primary_10_3390_s18103517 crossref_primary_10_3390_s18010076 crossref_primary_10_1038_s41467_020_19424_2 |
| Cites_doi | 10.1109/IEMBS.1999.803999 10.1109/TBME.2006.875664 10.1109/TNSRE.2005.847353 10.1109/JPROC.2009.2038727 10.1109/IROS.2008.4650766 10.1109/TIM.2007.911646 10.1007/s11517-007-0296-5 10.1016/j.jbiomech.2010.05.026 10.1007/BF02345966 10.1109/IROS.2009.5353912 10.1109/MRA.2007.901320 10.1109/TAC.2008.923738 10.1109/TBME.2008.2001285 10.2514/3.19717 10.1109/70.127239 10.1137/1007077 10.1016/j.bspc.2007.09.001 10.1109/TMECH.2009.2039222 10.1109/ICRA.2011.5979957 10.1109/ROBOT.2004.1308022 10.1364/JOSAA.4.000629 10.1109/ICORR.2011.5975346 10.1186/1477-5751-6-2 10.1088/0957-0233/21/1/012001 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TNSRE.2012.2205706 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Technology Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 264 |
| ExternalDocumentID | 2938723291 22801527 10_1109_TNSRE_2012_2205706 6237648 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c417t-2efd896339a7a06ddf739c385efd2484205a6c68e72685e068f8d75b23f928253 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316264100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Sep 05 10:39:58 EDT 2025 Tue Oct 07 09:09:39 EDT 2025 Fri Sep 05 11:19:53 EDT 2025 Sun Jul 13 03:58:53 EDT 2025 Wed Feb 19 01:52:18 EST 2025 Tue Nov 18 21:01:01 EST 2025 Sat Nov 29 01:47:02 EST 2025 Wed Aug 27 02:51:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c417t-2efd896339a7a06ddf739c385efd2484205a6c68e72685e068f8d75b23f928253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 22801527 |
| PQID | 1324440747 |
| PQPubID | 85423 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1352287852 pubmed_primary_22801527 crossref_primary_10_1109_TNSRE_2012_2205706 proquest_miscellaneous_1671516522 crossref_citationtrail_10_1109_TNSRE_2012_2205706 ieee_primary_6237648 proquest_miscellaneous_1316053826 proquest_journals_1324440747 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
| PublicationYear | 2013 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 welch (ref20) 1995 zhou (ref8) 2006 ref15 ref14 ref11 ref10 (ref12) 0 ref2 ref1 ref17 ref19 ref18 bachmann (ref29) 2000 lee (ref23) 2009; 56 ref24 ref26 ref25 ref22 ref21 ref28 yun (ref9) 2003; 2 ref27 ref7 ref4 ref3 ref6 ref5 luinge (ref16) 1999; 2 |
| References_xml | – volume: 2 start-page: 844 year: 1999 ident: ref16 article-title: Estimating of orientation with gyroscopes and accelerometers (student paper finalist) publication-title: Proc 1st Joint BMES/EMBS Conf Serving Humanity Advancing Technol doi: 10.1109/IEMBS.1999.803999 – ident: ref18 doi: 10.1109/TBME.2006.875664 – ident: ref19 doi: 10.1109/TNSRE.2005.847353 – ident: ref2 doi: 10.1109/JPROC.2009.2038727 – ident: ref25 doi: 10.1109/IROS.2008.4650766 – year: 0 ident: ref12 publication-title: Vicon Motion Capture Systems – ident: ref13 doi: 10.1109/TIM.2007.911646 – ident: ref4 doi: 10.1007/s11517-007-0296-5 – volume: 2 start-page: 1074 year: 2003 ident: ref9 article-title: An improved quaternion-based Kalman filter for real-time tracking of rigid body orientation publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst – ident: ref7 doi: 10.1016/j.jbiomech.2010.05.026 – ident: ref15 doi: 10.1007/BF02345966 – ident: ref5 doi: 10.1109/IROS.2009.5353912 – ident: ref11 doi: 10.1109/MRA.2007.901320 – ident: ref24 doi: 10.1109/TAC.2008.923738 – volume: 56 start-page: 1574 year: 2009 ident: ref23 article-title: A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2001285 – start-page: 930 year: 2006 ident: ref8 article-title: Wearable inertial sensors for arm motion tracking in home-based rehabilitation publication-title: Proc 9th Int Conf Intell Automous Syst – year: 2000 ident: ref29 publication-title: Inertial and magnetic tracking of limb segment orientation for inserting humans into synthetic environments – ident: ref22 doi: 10.2514/3.19717 – ident: ref27 doi: 10.1109/70.127239 – ident: ref21 doi: 10.1137/1007077 – ident: ref1 doi: 10.1016/j.bspc.2007.09.001 – ident: ref6 doi: 10.1109/TMECH.2009.2039222 – ident: ref26 doi: 10.1109/ICRA.2011.5979957 – ident: ref17 doi: 10.1109/ROBOT.2004.1308022 – ident: ref28 doi: 10.1364/JOSAA.4.000629 – year: 1995 ident: ref20 publication-title: An introduction to the Kalman filter – ident: ref14 doi: 10.1109/ICORR.2011.5975346 – ident: ref3 doi: 10.1186/1477-5751-6-2 – ident: ref10 doi: 10.1088/0957-0233/21/1/012001 |
| SSID | ssj0017657 |
| Score | 2.396774 |
| Snippet | High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 254 |
| SubjectTerms | Acceleration Actigraphy - instrumentation Adaptive-gain complementary filter Algorithms angular rate and gravity (MARG) sensors Computer Systems Distortion Earth Equipment Design Equipment Failure Analysis Estimation Feedback Gauss-Newton optimization algorithm (GNA) Gyroscopes Human motion human motion capture (MoCap) Humans magnetic Magnetic sensors Magnetometers Magnetometry - instrumentation Mathematical analysis Movement - physiology Orientation quaternion-based orientation Real time Rehabilitation Reproducibility of Results Sensitivity and Specificity Sensors Signal Processing, Computer-Assisted - instrumentation Studies Telemetry - instrumentation Vectors |
| Title | An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking With MARG Sensors in Free-Living Environments |
| URI | https://ieeexplore.ieee.org/document/6237648 https://www.ncbi.nlm.nih.gov/pubmed/22801527 https://www.proquest.com/docview/1324440747 https://www.proquest.com/docview/1316053826 https://www.proquest.com/docview/1352287852 https://www.proquest.com/docview/1671516522 |
| Volume | 21 |
| WOSCitedRecordID | wos000316264100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1534-4320 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tEw-88DU-AmMyEvAC3tLEsZ3HCrXjgVWoK6JvkWM7ItKUTmkL4r_nzkmjTYJKvEXOObJ8d_Gd7-MH8LaypVMiszzH45ULh36KUbHlaDp4qXxlUhsHsAk1m-nlMv96AB-HWhjvfUg-82f0GGL5bmW3dFV2LimFQ-hDOFRKdrVaQ8RAydDVExVYcJEm8a5AJs7PF7Or-YSyuJIzKitVMeEWURsYgnS9cx4FgJV_25rhzJk-_L_VPoIHvW3Jxp0wPIYD3zyBd7f7CLNF10SAvWfzOy26j-HXuGFjZ27o98cvTN0w-lX0yeXtbzatKa7O0MbFqeaaU-0ICyEAdhmQgBgee5Yu3tn3evODXY7nF-wKneRVu2b4tWnrPf9S0_0Fm9yqrnsK36aTxafPvEdl4FaM1IYnvnIa1TbNjTKxdK5SaW5TneF4IrTAHTbSSu1VInEwlrrSTmVlklY5Fcqmz-CoWTX-BTAxqjy6T7JEO1Oo0mtZydxJZcs8c9LEEYx2vClsvx-EnHFdBNclzovA2oJYW_SsjeDDMOema9ixl_qYGDdQ9jyL4GQnAkWv0-sC_XYhBAEORPBmeI3aSCEW0_jVlmhG6B-m6LPto0GbVyudJXtopEJTTCJhBM87ERzWuJPcl39f-yu4nwTIDsqTO4GjTbv1r-Ge_bmp1-0pqs5SnwbV-QMhiBIg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGQIIXvsZHYICRgBfmzU0c23msULsh2gp1RewtcmxHRJrSKW1B_PfcOWm0SVCJt8g5R1buzr7zffwIeVfawimRWpbB8cqEAz_FKG4ZmA5eKl-axPIANqFmM31xkX3dI0d9LYz3PiSf-WN8DLF8t7QbvCo7kZjCIfQtcjsVIuZttVYfM1Ay9PUEFRZMJDHflsjw7GQxO5-PMI8rPsbCUsURuQgbwSCo640TKUCs_NvaDKfO-MH_rfchud9Zl3TYisMjsufrx-T99U7CdNG2EaAf6PxGk-4D8mtY06EzV7gBslNT1RQ3iy69vPlNxxVG1ilYuTDVXDKsHqEhCECnAQuIwsFn8eqdfq_WP-h0OD-l5-AmL5sVha-NG-_ZpMIbDDq6Vl_3hHwbjxafzliHy8CsGKg1i33pNChukhlluHSuVElmE53CeCw0cCY10krtVSxhkEtdaqfSIk7KDEtlk6dkv17W_jmhYlB6cKBkAZamUIXXspSZk8oWWeqk4REZbHmT2-5_IHbGZR6cF57lgbU5sjbvWBuRj_2cq7Zlx07qA2RcT9nxLCKHWxHIO61e5eC5CyEQciAib_vXoI8YZDG1X26QZgAeYgJe2y4asHq10mm8g0YqMMYkEEbkWSuC_Rq3kvvi72t_Q-6eLaaTfPJ59uUluRcHAA_Mmjsk--tm41-RO_bnulo1r4MC_QEMYhR_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive-Gain+Complementary+Filter+for+Real-Time+Human+Motion+Tracking+With+MARG+Sensors+in+Free-Living+Environments&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Tian%2C+Ya&rft.au=Wei%2C+Hongxing&rft.au=Tan%2C+Jindong&rft.date=2013-03-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=21&rft.issue=2&rft.spage=254&rft.epage=264&rft_id=info:doi/10.1109%2FTNSRE.2012.2205706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2012_2205706 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |