An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking With MARG Sensors in Free-Living Environments

High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural systems and rehabilitation engineering Ročník 21; číslo 2; s. 254 - 264
Hlavní autoři: Tian, Ya, Wei, Hongxing, Tan, Jindong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1534-4320, 1558-0210, 1558-0210
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.
AbstractList High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.
High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many diseases for more effective treatments, such as rehabilitation for outpatients or recovery from lost motor functions after a stroke. In order to achieve real-time ambulatory human motion tracking with low-cost MARG (magnetic, angular rate, and gravity) sensors, a computationally efficient and robust algorithm for orientation estimation is critical. This paper presents an analytically derived method for an adaptive-gain complementary filter based on the convergence rate from the Gauss-Newton optimization algorithm (GNA) and the divergence rate from the gyroscope, which is referred as adaptive-gain orientation filter (AGOF) in this paper. The AGOF has the advantages of one iteration calculation to reduce the computing load and accurate estimation of gyroscope measurement error. Moreover, for handling magnetic distortions especially in indoor environments and movements with excessive acceleration, adaptive measurement vectors and a reference vector for earth's magnetic field selection schemes are introduced to help the GNA find more accurate direction of gyroscope error. The features of this approach include the accurate estimation of the gyroscope bias to correct the instantaneous gyroscope measurements and robust estimation in conditions of fast motions and magnetic distortions. Experimental results are presented to verify the performance of the proposed method, which shows better accuracy of orientation estimation than several well-known methods.
Author Wei, Hongxing
Tan, Jindong
Tian, Ya
Author_xml – sequence: 1
  givenname: Ya
  surname: Tian
  fullname: Tian, Ya
  email: tya@mtu.edu
  organization: Department of Mechanical, Aerospace and Biomedical Engineering, the University of Tennessee, Knoxville, TN, USA
– sequence: 2
  givenname: Hongxing
  surname: Wei
  fullname: Wei, Hongxing
  email: weihongxing@buaa.edu.cn
  organization: School of Mechanical Engineering and Automation, Beihang University, Beijing, China
– sequence: 3
  givenname: Jindong
  surname: Tan
  fullname: Tan, Jindong
  email: tan@utk.edu
  organization: Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22801527$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P0zAQhiO0iP2APwASssSFS4o9jj9yrKq2i9QFqVvEMfImE_CS2MVOivj3OLTLYQ_AaUaj532lmXkvszPnHWbZS0ZnjNHy3e7D7XY5A8pgBkCFovJJdsGE0DkFRs-mnhd5wYGeZ5cx3lPKlBTqWXYOoCkToC6yH3NH5o3ZD_aA-dpYRxa-33fYoxtM-ElWthswkNYHskXT5TvbI7kee-PIjR-sd2QXTP3Nui_ksx2-kpv5dk1u0UUfIkluq4CYb-xhApbuYIN3k3V8nj1tTRfxxaleZZ9Wy93iOt98XL9fzDd5XTA15IBto0vJeWmUobJpWsXLmmuR5lDoIq1tZC01KpBpSKVudaPEHfC2BA2CX2Vvj7774L-PGIeqt7HGrjMO_RgrJhUTTAqAf6M8UVpp8T8ok1RwDTKhbx6h934MLu2cKCiKgqpCJer1iRrvemyqfbB9On_18KgE6CNQBx9jwLaq7WCmBwzB2K5itJoyUf3ORDVlojplIknhkfTB_a-iV0eRRcQ_AglcyULzX4lAvvs
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2889320
crossref_primary_10_1016_j_cja_2019_07_021
crossref_primary_10_3390_s20030803
crossref_primary_10_3390_mi14051070
crossref_primary_10_1109_TIM_2018_2869262
crossref_primary_10_1177_1756829318756356
crossref_primary_10_1109_TASE_2015_2471175
crossref_primary_10_1016_j_mechmachtheory_2017_07_018
crossref_primary_10_1155_2017_9560108
crossref_primary_10_3390_s18092944
crossref_primary_10_1109_TASE_2020_2978106
crossref_primary_10_3390_asi4010014
crossref_primary_10_1016_j_measurement_2025_117265
crossref_primary_10_1007_s10846_017_0507_8
crossref_primary_10_1017_S0373463318000231
crossref_primary_10_1088_1742_2140_aadd2f
crossref_primary_10_1007_s12555_024_0221_9
crossref_primary_10_1155_2017_8542153
crossref_primary_10_1109_JSEN_2020_3024806
crossref_primary_10_3390_s21072543
crossref_primary_10_1016_j_isatra_2017_12_013
crossref_primary_10_3390_s19061340
crossref_primary_10_1080_21642583_2024_2343303
crossref_primary_10_1109_TIM_2013_2277514
crossref_primary_10_1109_JSEN_2016_2589660
crossref_primary_10_1155_2018_8787236
crossref_primary_10_1088_1361_6501_aae125
crossref_primary_10_1109_TVCG_2024_3464738
crossref_primary_10_3390_s17061257
crossref_primary_10_3390_mi9030113
crossref_primary_10_1109_TIM_2025_3545892
crossref_primary_10_1177_0959651818785840
crossref_primary_10_3390_rs10030377
crossref_primary_10_3390_s150819302
crossref_primary_10_1108_SR_07_2019_0186
crossref_primary_10_1109_JBHI_2018_2795006
crossref_primary_10_1016_j_ast_2017_07_011
crossref_primary_10_1109_TVT_2021_3067659
crossref_primary_10_1016_j_inffus_2020_10_018
crossref_primary_10_1007_s13246_023_01332_6
crossref_primary_10_1109_JSEN_2023_3315849
crossref_primary_10_1186_s12938_016_0291_x
crossref_primary_10_1109_TIM_2015_2498998
crossref_primary_10_3390_electronics13122245
crossref_primary_10_3390_s21061937
crossref_primary_10_1109_TIE_2019_2946557
crossref_primary_10_3390_s20226417
crossref_primary_10_3390_s19030451
crossref_primary_10_1109_TBME_2019_2924689
crossref_primary_10_1007_s00779_017_1040_2
crossref_primary_10_1016_j_ast_2018_06_008
crossref_primary_10_1109_JSEN_2017_2787578
crossref_primary_10_1109_TNSRE_2020_2971762
crossref_primary_10_1109_TNNLS_2021_3076060
crossref_primary_10_1371_journal_pone_0161940
crossref_primary_10_1007_s40295_025_00490_x
crossref_primary_10_1080_00207179_2025_2537253
crossref_primary_10_1109_ACCESS_2021_3062978
crossref_primary_10_1109_JSEN_2021_3092678
crossref_primary_10_1515_teme_2019_0158
crossref_primary_10_1109_TCE_2018_2859625
crossref_primary_10_1109_TIM_2019_2930437
crossref_primary_10_3389_fphys_2018_00141
crossref_primary_10_1109_TMECH_2017_2698639
crossref_primary_10_3390_s20236752
crossref_primary_10_1109_ACCESS_2024_3482714
crossref_primary_10_1109_JSEN_2022_3193313
crossref_primary_10_1109_TIM_2021_3052026
crossref_primary_10_1016_j_measurement_2019_107046
crossref_primary_10_1109_TASE_2018_2888908
crossref_primary_10_3390_s18103517
crossref_primary_10_3390_s18010076
crossref_primary_10_1038_s41467_020_19424_2
Cites_doi 10.1109/IEMBS.1999.803999
10.1109/TBME.2006.875664
10.1109/TNSRE.2005.847353
10.1109/JPROC.2009.2038727
10.1109/IROS.2008.4650766
10.1109/TIM.2007.911646
10.1007/s11517-007-0296-5
10.1016/j.jbiomech.2010.05.026
10.1007/BF02345966
10.1109/IROS.2009.5353912
10.1109/MRA.2007.901320
10.1109/TAC.2008.923738
10.1109/TBME.2008.2001285
10.2514/3.19717
10.1109/70.127239
10.1137/1007077
10.1016/j.bspc.2007.09.001
10.1109/TMECH.2009.2039222
10.1109/ICRA.2011.5979957
10.1109/ROBOT.2004.1308022
10.1364/JOSAA.4.000629
10.1109/ICORR.2011.5975346
10.1186/1477-5751-6-2
10.1088/0957-0233/21/1/012001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2012.2205706
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 264
ExternalDocumentID 2938723291
22801527
10_1109_TNSRE_2012_2205706
6237648
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-2efd896339a7a06ddf739c385efd2484205a6c68e72685e068f8d75b23f928253
IEDL.DBID RIE
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316264100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1534-4320
1558-0210
IngestDate Fri Sep 05 10:39:58 EDT 2025
Tue Oct 07 09:09:39 EDT 2025
Fri Sep 05 11:19:53 EDT 2025
Sun Jul 13 03:58:53 EDT 2025
Wed Feb 19 01:52:18 EST 2025
Tue Nov 18 21:01:01 EST 2025
Sat Nov 29 01:47:02 EST 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-2efd896339a7a06ddf739c385efd2484205a6c68e72685e068f8d75b23f928253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 22801527
PQID 1324440747
PQPubID 85423
PageCount 11
ParticipantIDs proquest_miscellaneous_1352287852
pubmed_primary_22801527
crossref_primary_10_1109_TNSRE_2012_2205706
proquest_miscellaneous_1671516522
crossref_citationtrail_10_1109_TNSRE_2012_2205706
ieee_primary_6237648
proquest_miscellaneous_1316053826
proquest_journals_1324440747
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
welch (ref20) 1995
zhou (ref8) 2006
ref15
ref14
ref11
ref10
(ref12) 0
ref2
ref1
ref17
ref19
ref18
bachmann (ref29) 2000
lee (ref23) 2009; 56
ref24
ref26
ref25
ref22
ref21
ref28
yun (ref9) 2003; 2
ref27
ref7
ref4
ref3
ref6
ref5
luinge (ref16) 1999; 2
References_xml – volume: 2
  start-page: 844
  year: 1999
  ident: ref16
  article-title: Estimating of orientation with gyroscopes and accelerometers (student paper finalist)
  publication-title: Proc 1st Joint BMES/EMBS Conf Serving Humanity Advancing Technol
  doi: 10.1109/IEMBS.1999.803999
– ident: ref18
  doi: 10.1109/TBME.2006.875664
– ident: ref19
  doi: 10.1109/TNSRE.2005.847353
– ident: ref2
  doi: 10.1109/JPROC.2009.2038727
– ident: ref25
  doi: 10.1109/IROS.2008.4650766
– year: 0
  ident: ref12
  publication-title: Vicon Motion Capture Systems
– ident: ref13
  doi: 10.1109/TIM.2007.911646
– ident: ref4
  doi: 10.1007/s11517-007-0296-5
– volume: 2
  start-page: 1074
  year: 2003
  ident: ref9
  article-title: An improved quaternion-based Kalman filter for real-time tracking of rigid body orientation
  publication-title: Proc IEEE/RSJ Int Conf Intell Robots Syst
– ident: ref7
  doi: 10.1016/j.jbiomech.2010.05.026
– ident: ref15
  doi: 10.1007/BF02345966
– ident: ref5
  doi: 10.1109/IROS.2009.5353912
– ident: ref11
  doi: 10.1109/MRA.2007.901320
– ident: ref24
  doi: 10.1109/TAC.2008.923738
– volume: 56
  start-page: 1574
  year: 2009
  ident: ref23
  article-title: A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2001285
– start-page: 930
  year: 2006
  ident: ref8
  article-title: Wearable inertial sensors for arm motion tracking in home-based rehabilitation
  publication-title: Proc 9th Int Conf Intell Automous Syst
– year: 2000
  ident: ref29
  publication-title: Inertial and magnetic tracking of limb segment orientation for inserting humans into synthetic environments
– ident: ref22
  doi: 10.2514/3.19717
– ident: ref27
  doi: 10.1109/70.127239
– ident: ref21
  doi: 10.1137/1007077
– ident: ref1
  doi: 10.1016/j.bspc.2007.09.001
– ident: ref6
  doi: 10.1109/TMECH.2009.2039222
– ident: ref26
  doi: 10.1109/ICRA.2011.5979957
– ident: ref17
  doi: 10.1109/ROBOT.2004.1308022
– ident: ref28
  doi: 10.1364/JOSAA.4.000629
– year: 1995
  ident: ref20
  publication-title: An introduction to the Kalman filter
– ident: ref14
  doi: 10.1109/ICORR.2011.5975346
– ident: ref3
  doi: 10.1186/1477-5751-6-2
– ident: ref10
  doi: 10.1088/0957-0233/21/1/012001
SSID ssj0017657
Score 2.396774
Snippet High-resolution, real-time data obtained by human motion tracking systems can be used for gait analysis, which helps better understanding the cause of many...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Acceleration
Actigraphy - instrumentation
Adaptive-gain complementary filter
Algorithms
angular rate and gravity (MARG) sensors
Computer Systems
Distortion
Earth
Equipment Design
Equipment Failure Analysis
Estimation
Feedback
Gauss-Newton optimization algorithm (GNA)
Gyroscopes
Human motion
human motion capture (MoCap)
Humans
magnetic
Magnetic sensors
Magnetometers
Magnetometry - instrumentation
Mathematical analysis
Movement - physiology
Orientation
quaternion-based orientation
Real time
Rehabilitation
Reproducibility of Results
Sensitivity and Specificity
Sensors
Signal Processing, Computer-Assisted - instrumentation
Studies
Telemetry - instrumentation
Vectors
Title An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking With MARG Sensors in Free-Living Environments
URI https://ieeexplore.ieee.org/document/6237648
https://www.ncbi.nlm.nih.gov/pubmed/22801527
https://www.proquest.com/docview/1324440747
https://www.proquest.com/docview/1316053826
https://www.proquest.com/docview/1352287852
https://www.proquest.com/docview/1671516522
Volume 21
WOSCitedRecordID wos000316264100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1534-4320
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9tEw-88DU-AmMyEvAC3tLYsZ3HCrXjYatQV6BvkRs7ItKUTmm7if-eOyeNNgkq8RY558jy3cV3vo8fwHsj7EB557iTxnJp45SbUhXcGmWtQ4NEhGY6P871ZGLm8-zbHnzua2G89yH5zJ_QY4jlu2WxoauyU0UpHNLsw77Wqq3V6iMGWoWunqjAkkuRxNsCmTg7nU0upyPK4kpOqKxUx4RbRG1gCNL13nkUAFb-bWuGM2f8-P9W-wQedbYlG7bC8BT2fP0MPtztI8xmbRMB9pFN77XoPoTbYc2Gzl7T74-f2apm9Kvoksub32xcUVydoY2LU-0Vp9oRFkIA7CIgATE89gq6eGc_q_UvdjGcnrFLdJKXzYrh18aN9_y8ovsLNrpTXfccvo9Hsy9feYfKwAs50Gue-NIZVFuRWW1j5VypRVYIk-J4Io3EHbaqUMbrROFgrExpnE4XiSgzKpQVL-CgXtb-FbCFE15JLctMGLnILDqbTtOmydQsjCgiGGx5kxfdfhByxlUeXJc4ywNrc2Jt3rE2gk_9nOu2YcdO6kNiXE_Z8SyCo60I5J1Or3L026WUBDgQwbv-NWojhVhs7ZcbohmgfyjQZ9tFgzav0SZNdtAojaaYQsIIXrYi2K9xK7mv_772N_AwCZAdlCd3BAfrZuPfwoPiZl2tmmNUnbk5DqrzB5TNEb0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQvfI2PwgAjAS_gLY0d23msULsh2gp1BfYWubEjIk3plLYg_nvunDTaJKjEW-ScI8t3F9_5Pn4Ab4ywfeWd404ay6WNEm4KlXNrlLUODRIRmul8G-vp1Jyfp1_24ENXC-O9D8ln_ogeQyzfLfMNXZUdK0rhkOYG3EykjKOmWquLGWgV-nqiCksuRRxtS2Si9Hg-PZsNKY8rPqLCUh0RchE1giFQ12snUoBY-be1GU6d0b3_W-99uNtal2zQiMMD2PPVQ3h7tZMwmzdtBNg7NrvWpPsAfg0qNnD2kn6A_MSWFaOfRZteXv9mo5Ii6wytXJxqLzhVj7AQBGCTgAXE8ODL6eqdfS_XP9hkMDthZ-gmL-sVw6-Nau_5uKQbDDa8Ul_3CL6OhvOPp7zFZeC57Os1j33hDCquSK22kXKu0CLNhUlwPJYGOZNYlSvjdaxwMFKmME4ni1gUKZXKisewXy0r_xTYwgmvpJZFKoxcpBbdTadp02RiFkbkPehveZPl7X4QdsZFFpyXKM0CazNibdaytgfvuzmXTcuOndQHxLiOsuVZDw63IpC1Wr3K0HOXUhLkQA9ed69RHynIYiu_3BBNHz1EgV7bLhq0eo02SbyDRmk0xhQS9uBJI4LdGreS--zva38Ft0_nk3E2_jT9_BzuxAHAg7LmDmF_XW_8C7iV_1yXq_plUKA_fU0UHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+adaptive-gain+complementary+filter+for+real-time+human+motion+tracking+with+MARG+sensors+in+free-living+environments&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Tian%2C+Ya&rft.au=Wei%2C+Hongxing&rft.au=Tan%2C+Jindong&rft.date=2013-03-01&rft.eissn=1558-0210&rft.volume=21&rft.issue=2&rft.spage=254&rft_id=info:doi/10.1109%2FTNSRE.2012.2205706&rft_id=info%3Apmid%2F22801527&rft.externalDocID=22801527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon