Extracting quadratic propagators by refined graphic rule

A bstract One-loop integrands in Cachazo-He-Yuan (CHY) formula, which is based on the forward limit of tree-level amplitudes, involves linear propagators that are different from quadratic ones in traditional Feynman diagrams. In this paper, we provide a general approach to converting linear propagat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The journal of high energy physics Ročník 2025; číslo 2; s. 68 - 72
Hlavní autoři: Xie, Chongsi, Du, Yi-Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 12.02.2025
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-8479, 1029-8479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A bstract One-loop integrands in Cachazo-He-Yuan (CHY) formula, which is based on the forward limit of tree-level amplitudes, involves linear propagators that are different from quadratic ones in traditional Feynman diagrams. In this paper, we provide a general approach to converting linear propagators in one-loop CHY formula into quadratic propagators, by refined graphic rule stemming from the recursive expansion of tree-level Einstein-Yang-Mills amplitudes. Particularly, we establish the correspondence between refined graphs and bi-adjoint scalar (BS) Feynman diagrams with linear propagators. Using this correspondence and graph-based relations of Berends-Giele currents in BS theory, the nonlocal terms accompanied by refined graphs can either be canceled out or be collected into local ones. Once the locality has been achieved, the integrand with linear propagators can be directly arranged into that with quadratic propagators. Following this approach, we first convert the linear propagators in single-trace Yang-Mills-scalar (YMS) integrands (with a pure-scalar loop) into quadratic ones. This result is then demonstrated to match the traditional one-loop Feynman diagrams. The discussions on single-trace YMS integrands are generalized to multi-trace YMS and Yang-Mills integrands.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2025)068