Fredholm Eigenvalues and Quasiconformal Geometry of Polygons
An important open problem in geometric complex analysis is to establish algorithms for the explicit determination of the basic curvilinear and analytic functionals intrinsically connected with conformal and quasiconformal maps, such as their Teichmüller and Grunsky norms, Fredholm eigenvalues, and t...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) Jg. 252; H. 4; S. 472 - 501 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2021
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1072-3374, 1573-8795 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | An important open problem in geometric complex analysis is to establish algorithms for the explicit determination of the basic curvilinear and analytic functionals intrinsically connected with conformal and quasiconformal maps, such as their Teichmüller and Grunsky norms, Fredholm eigenvalues, and the quasireflection coefficient. This is important also for the potential theory but has not been solved even for convex polygons. This case has intrinsic interest in view of the connection of polygons with the geometry of the universal Teichmüller space and approximation theory.
This survey extends our previous survey of 2005 and presents the new approaches and recent essential progress in this field of geometric complex analysis and potential theory, having various important applications. Another new topic concerns quasireflections across finite collections of quasiintervals (to which the notion of Fredholm eigenvalues also can be extended). |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-020-05175-4 |