Meta‐learning how to forecast time series

Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of forecasting Vol. 42; no. 6; pp. 1476 - 1501
Main Authors: Talagala, Thiyanga S., Hyndman, Rob J., Athanasopoulos, George
Format: Journal Article
Language:English
Published: Chichester Wiley Periodicals Inc 01.09.2023
Subjects:
ISSN:0277-6693, 1099-131X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model.
AbstractList Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model.
Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model Selection (FFORMS), which selects forecast models based on features calculated from each time series. The FFORMS framework builds a mapping that relates the features of a time series to the “best” forecast model using a classification algorithm such as a random forest. The framework is evaluated using time series from the M‐forecasting competitions and is shown to yield forecasts that are almost as accurate as state‐of‐the‐art methods but are much faster to compute. We use model‐agnostic machine learning interpretability methods to explore the results and to study what types of time series are best suited to each forecasting model.
Author Athanasopoulos, George
Talagala, Thiyanga S.
Hyndman, Rob J.
Author_xml – sequence: 1
  givenname: Thiyanga S.
  surname: Talagala
  fullname: Talagala, Thiyanga S.
  email: ttalagala@sjp.ac.lk
  organization: University of Sri Jayewardenepura
– sequence: 2
  givenname: Rob J.
  surname: Hyndman
  fullname: Hyndman, Rob J.
  organization: Monash University
– sequence: 3
  givenname: George
  surname: Athanasopoulos
  fullname: Athanasopoulos, George
  organization: Monash University
BookMark eNp1kM1Kw0AURgepYFsFHyHgRpDE-WtmspRiVagURMHdMJnc6JQ0U2emlO58BJ_RJzE1rkRXd3O-c-_9RmjQuhYQOiU4IxjTy9r5jBY5O0BDgosiJYw8D9AQUyHSPC_YERqFsMQYC0noEF3cQ9Sf7x8NaN_a9iV5ddskuqTTgNEhJtGuIAngLYRjdFjrJsDJzxyjp9n14_Q2nS9u7qZX89RwIljKRV1ymDCqy4ryAjNDucx1xQnm3QGlFjmUsjYVlFQbLs2EVKyksqo0o7jmbIzOeu_au7cNhKiWbuPbbqWiknNWcElFR533lPEuBA-1Wnu70n6nCFb7KlT3g9pX0aHZL9TYqKN1bfTaNn8F0j6wtQ3s_hWr2eLhm_8CW8xxGg
CitedBy_id crossref_primary_10_1108_JM2_09_2023_0211
crossref_primary_10_3390_app14031169
crossref_primary_10_1007_s00521_024_09659_1
crossref_primary_10_1016_j_eswa_2024_125666
crossref_primary_10_1111_ejed_12805
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1109_TCSS_2024_3442238
crossref_primary_10_1016_j_pce_2024_103686
crossref_primary_10_1109_ACCESS_2024_3458391
crossref_primary_10_1109_ACCESS_2025_3584923
crossref_primary_10_1002_for_3099
crossref_primary_10_1016_j_engappai_2025_111121
crossref_primary_10_3390_app13127065
crossref_primary_10_1145_3715149
Cites_doi 10.1002/for.3980010202
10.1109/IJCNN.2016.7727376
10.1016/S0169-2070(00)00057-1
10.21105/joss.00359
10.1002/for.3980120104
10.32614/CRAN.package.vip
10.1016/S0169-2070(97)00031-9
10.1016/j.neucom.2008.10.017
10.1016/j.ijforecast.2016.09.004
10.1007/978-0-387-75967-8
10.1002/sam.11461
10.2307/2347679
10.1016/j.ijforecast.2019.04.014
10.1016/S0169-2070(01)00110-8
10.1111/j.1467-9892.1993.tb00139.x
10.1016/j.ijforecast.2019.02.011
10.1109/TKDE.2014.2316504
10.2172/1447470
10.1080/10618600.2014.907095
10.32614/CRAN.package.gratis
10.1287/mnsc.38.10.1394
10.1109/PROC.1982.12435
10.1016/S0065-2458(08)60520-3
10.1016/j.neucom.2009.09.020
10.1007/978-3-540-71918-2
10.1109/ICDMW.2015.104
10.1145/1456650.1456656
10.1016/S0304-4076(00)00030-0
10.1016/j.ijforecast.2021.07.002
10.1214/07-AOAS148
10.1016/j.neucom.2004.03.008
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1002/for.2963
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList
CrossRef
International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Social Sciences (General)
Business
EISSN 1099-131X
EndPage 1501
ExternalDocumentID 10_1002_for_2963
FOR2963
Genre article
GroupedDBID -~X
.3N
.GA
.L6
.Y3
05W
0R~
10A
1L6
1OB
1OC
1XV
29K
3-9
31~
33P
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5VS
66C
702
7PT
7WY
8-0
8-1
8-3
8-4
8-5
8FL
8FW
8R4
8R5
8UM
8VB
930
9M8
A04
AABNI
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABSOO
ABTAH
ABUWG
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACHQT
ACPOU
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKFF
AFKRA
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AHQJS
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BEZIV
BFHJK
BKOMP
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BY8
CCPQU
CS3
D-C
D-D
D-I
DCZOG
DJZPD
DPXWK
DR2
DRFUL
DRSSH
DU5
DWQXO
EBO
EBS
EBU
EJD
F00
F01
F5P
FEDTE
FRNLG
G-S
G.N
G50
GNP
GODZA
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
K1G
K60
K6~
KQQ
LATKE
LAW
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
M0C
M55
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2Y
P4C
PALCI
PQBIZ
PQBZA
PQQKQ
PROAC
Q.N
Q11
Q2X
QB0
QRW
QWB
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TH9
TN5
U5U
UB1
UHB
V2E
V8K
VQA
W8V
W99
WBKPD
WEBCB
WH7
WIB
WIH
WII
WOHZO
WQZ
WRC
WSUWO
WWB
WXSBR
XG1
XPP
XSW
XV2
ZCG
ZL0
ZY4
ZZTAW
~IA
~WP
AAMMB
AAYXX
ABBNM
ADXHL
AEFGJ
AETEA
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
PHGZM
PHGZT
8BJ
FQK
JBE
ID FETCH-LOGICAL-c4173-47fb4e532abd24903c2486ad4104693ba76eb8fcdeb2ac48c51d3b28dda320f43
IEDL.DBID DRFUL
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000937724000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6693
IngestDate Sat Nov 08 06:08:32 EST 2025
Sat Nov 29 02:17:10 EST 2025
Tue Nov 18 21:38:26 EST 2025
Wed Jan 22 16:18:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4173-47fb4e532abd24903c2486ad4104693ba76eb8fcdeb2ac48c51d3b28dda320f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://figshare.com/articles/journal_contribution/Meta-learning_how_to_forecast_time_series/21522471
PQID 2844394827
PQPubID 48359
PageCount 26
ParticipantIDs proquest_journals_2844394827
crossref_primary_10_1002_for_2963
crossref_citationtrail_10_1002_for_2963
wiley_primary_10_1002_for_2963_FOR2963
PublicationCentury 2000
PublicationDate September 2023
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of forecasting
PublicationYear 2023
Publisher Wiley Periodicals Inc
Publisher_xml – name: Wiley Periodicals Inc
References 2004; 61
2009; 41
2017; 2
2002; 18
1982; 70
2009
2014; 26
2008
2002; 2
2020; 36
2020; 13
1972
2004
1999; 3
1992; 38
2001; 45
2008; 2
2015; 24
1993; 14
1993; 12
2000; 16
1982; 1
2022
2021
2009; 72
2020
2017; 33
2000; 99
1997; 13
2008; 26
2018
1984
2017
2016
2015
2001; 17
2013
1989; 38
1976; 15
2022; 38
2010; 73
e_1_2_10_44_1
e_1_2_10_42_1
Xie Y. (e_1_2_10_55_1) 2017
Kalousis A. (e_1_2_10_27_1) 1999; 3
e_1_2_10_40_1
Hyndman R. J. (e_1_2_10_22_1) 2021
(e_1_2_10_46_1) 1972
Hyndman R. J. (e_1_2_10_21_1) 2001; 17
e_1_2_10_4_1
Liaw A. (e_1_2_10_34_1) 2002; 2
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
Lawrence M. (e_1_2_10_32_1) 2001; 17
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_51_1
Hyndman R. J. (e_1_2_10_23_1) 2008; 26
e_1_2_10_29_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Hadley W. (e_1_2_10_18_1) 2009
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Armstrong J. S. (e_1_2_10_2_1) 2001; 17
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 70
  start-page: 1115
  issue: 9
  year: 1982
  end-page: 1125
  article-title: Spectral estimation using combined time and lag weighting
  publication-title: Proceedings of the IEEE
– start-page: 64
  year: 2013
  end-page: 72
– year: 2009
– volume: 18
  start-page: 439
  issue: 3
  year: 2002
  end-page: 454
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: International Journal of Forecasting
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  end-page: 358
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: International Journal of Forecasting
– start-page: 1499
  year: 2016
  end-page: 1506
– volume: 17
  start-page: 542
  issue: 1
  year: 2001
  end-page: 543
  article-title: Should we redesign forecasting competitions?
  publication-title: International Journal of Forecasting
– volume: 2
  issue: 16
  year: 2017
  article-title: iheatmapr: Interactive complex heatmaps in R
  publication-title: Journal of Open Source Software
– volume: 12
  start-page: 37
  year: 1993
  end-page: 48
  article-title: Time‐series analysis supported by power transformations
  publication-title: Journal of Forecasting
– volume: 15
  start-page: 65
  year: 1976
  end-page: 118
  article-title: The algorithm selection problem
  publication-title: Advances in Computers
– volume: 41
  start-page: 6
  issue: 1
  year: 2009
  article-title: Cross‐disciplinary perspectives on meta‐learning for algorithm selection
  publication-title: ACM Computing Surveys (CSUR)
– volume: 73
  start-page: 2006
  issue: 10
  year: 2010
  end-page: 2016
  article-title: Meta‐learning for time series forecasting and forecast combination
  publication-title: Neurocomputing
– volume: 61
  start-page: 121
  year: 2004
  end-page: 137
  article-title: Meta‐learning approaches to selecting time series models
  publication-title: Neurocomputing
– year: 2021
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 38
  start-page: 1
  issue: 1
  year: 1989
  end-page: 50
  article-title: Space‐time modelling with long‐memory dependence: Assessing ireland's wind power resource
  publication-title: Applied Statistics
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 26
  start-page: 3026
  issue: 12
  year: 2014
  end-page: 3037
  article-title: Highly comparative feature‐based time‐series classification
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 36
  start-page: 54
  issue: 1
  year: 2020
  end-page: 74
  article-title: The m4 competition: 100,000 time series and 61 forecasting methods
  publication-title: International Journal of Forecasting
– year: 2016
– year: 2018
– start-page: 1616
  year: 2015
  end-page: 1619
– volume: 99
  start-page: 39
  issue: 1
  year: 2000
  end-page: 61
  article-title: Consistent cross‐validatory model‐selection for dependent data: HV‐block cross‐validation
  publication-title: Journal of Econometrics
– volume: 38
  start-page: 1394
  issue: 10
  year: 1992
  end-page: 1414
  article-title: Rule‐based forecasting: Development and validation of an expert systems approach to combining time series extrapolations
  publication-title: Management Science
– volume: 3
  start-page: 319
  issue: 5
  year: 1999
  end-page: 337
  article-title: NOEMON: Design, implementation and performance results of an intelligent assistant for classifier selection
  publication-title: Intelligent Data Analysis
– volume: 72
  start-page: 2581
  issue: 10
  year: 2009
  end-page: 2594
  article-title: Rule induction for forecasting method selection: Meta‐learning the characteristics of univariate time series
  publication-title: Neurocomputing
– year: 1984
– volume: 16
  start-page: 451
  issue: 4
  year: 2000
  end-page: 476
  article-title: The m3‐competition: Results, conclusions and implications
  publication-title: International Journal of Forecasting
– volume: 1
  start-page: 111
  issue: 2
  year: 1982
  end-page: 153
  article-title: The accuracy of extrapolation (time series) methods: Results of a forecasting competition
  publication-title: Journal of Forecasting
– volume: 38
  start-page: 920
  issue: 3
  year: 2022
  end-page: 943
  article-title: FFORMPP: Feature‐based forecast model performance prediction
  publication-title: International Journal of Forecasting
– year: 2008
– year: 2022
– volume: 14
  start-page: 209
  year: 1993
  end-page: 220
  article-title: Power of the neural network linearity test
  publication-title: Journal of Time Series Analysis
– year: 2004
– year: 2020
– volume: 36
  start-page: 86
  issue: 1
  year: 2020
  end-page: 92
  article-title: FFORMA: Feature‐based forecast model averaging
  publication-title: International Journal of Forecasting
– volume: 2
  start-page: 916
  issue: 3
  year: 2008
  end-page: 954
  article-title: Predictive learning via rule ensembles
  publication-title: The Annals of Applied Statistics
– year: 1972
– volume: 17
  start-page: 574
  issue: 1
  year: 2001
  end-page: 575
  article-title: Why another study?
  publication-title: International Journal of Forecasting
– volume: 17
  start-page: 567
  issue: 1
  year: 2001
  end-page: 570
  article-title: It's time to move from what to why
  publication-title: International Journal of Forecasting
– volume: 13
  start-page: 354
  issue: 4
  year: 2020
  end-page: 376
  article-title: Gratis: Generating time series with diverse and controllable characteristics
  publication-title: Statistical Analysis and Data Mining: The ASA Data Science Journal
– year: 2017
– volume: 26
  start-page: 1
  issue: 3
  year: 2008
  end-page: 22
  article-title: Automatic time series forecasting: The forecast package for R
  publication-title: Journal of Statistical Software
– volume: 13
  start-page: 489
  issue: 4
  year: 1997
  end-page: 500
  article-title: Model selection in univariate time series forecasting using discriminant analysis
  publication-title: International Journal of Forecasting
– volume: 24
  start-page: 44
  issue: 1
  year: 2015
  end-page: 65
  article-title: Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
  publication-title: Journal of Computational and Graphical Statistics
– year: 2013
– ident: e_1_2_10_35_1
  doi: 10.1002/for.3980010202
– ident: e_1_2_10_44_1
– ident: e_1_2_10_5_1
– ident: e_1_2_10_13_1
– ident: e_1_2_10_31_1
  doi: 10.1109/IJCNN.2016.7727376
– ident: e_1_2_10_36_1
  doi: 10.1016/S0169-2070(00)00057-1
– volume-title: Dynamic documents with r and knitr
  year: 2017
  ident: e_1_2_10_55_1
– ident: e_1_2_10_48_1
  doi: 10.21105/joss.00359
– ident: e_1_2_10_20_1
– ident: e_1_2_10_17_1
  doi: 10.1002/for.3980120104
– ident: e_1_2_10_16_1
  doi: 10.32614/CRAN.package.vip
– ident: e_1_2_10_49_1
  doi: 10.1016/S0169-2070(97)00031-9
– ident: e_1_2_10_53_1
  doi: 10.1016/j.neucom.2008.10.017
– ident: e_1_2_10_29_1
  doi: 10.1016/j.ijforecast.2016.09.004
– ident: e_1_2_10_41_1
  doi: 10.1007/978-0-387-75967-8
– ident: e_1_2_10_7_1
– ident: e_1_2_10_42_1
– ident: e_1_2_10_28_1
  doi: 10.1002/sam.11461
– ident: e_1_2_10_19_1
  doi: 10.2307/2347679
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ijforecast.2019.04.014
– volume: 17
  start-page: 567
  issue: 1
  year: 2001
  ident: e_1_2_10_21_1
  article-title: It's time to move from what to why
  publication-title: International Journal of Forecasting
– volume: 17
  start-page: 542
  issue: 1
  year: 2001
  ident: e_1_2_10_2_1
  article-title: Should we redesign forecasting competitions?
  publication-title: International Journal of Forecasting
– ident: e_1_2_10_25_1
  doi: 10.1016/S0169-2070(01)00110-8
– ident: e_1_2_10_52_1
  doi: 10.1111/j.1467-9892.1993.tb00139.x
– ident: e_1_2_10_39_1
  doi: 10.1016/j.ijforecast.2019.02.011
– ident: e_1_2_10_12_1
  doi: 10.1109/TKDE.2014.2316504
– ident: e_1_2_10_10_1
  doi: 10.2172/1447470
– ident: e_1_2_10_15_1
  doi: 10.1080/10618600.2014.907095
– ident: e_1_2_10_30_1
  doi: 10.32614/CRAN.package.gratis
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: e_1_2_10_34_1
  article-title: Classification and regression by randomforest
  publication-title: R News
– ident: e_1_2_10_8_1
  doi: 10.1287/mnsc.38.10.1394
– volume: 26
  start-page: 1
  issue: 3
  year: 2008
  ident: e_1_2_10_23_1
  article-title: Automatic time series forecasting: The forecast package for R
  publication-title: Journal of Statistical Software
– ident: e_1_2_10_40_1
  doi: 10.1109/PROC.1982.12435
– ident: e_1_2_10_38_1
– ident: e_1_2_10_47_1
  doi: 10.1016/S0065-2458(08)60520-3
– volume: 17
  start-page: 574
  issue: 1
  year: 2001
  ident: e_1_2_10_32_1
  article-title: Why another study?
  publication-title: International Journal of Forecasting
– volume-title: Forecasting: Principles and practice
  year: 2021
  ident: e_1_2_10_22_1
– volume-title: ggplot2: Elegant graphics for data analysis
  year: 2009
  ident: e_1_2_10_18_1
– ident: e_1_2_10_33_1
  doi: 10.1016/j.neucom.2009.09.020
– ident: e_1_2_10_24_1
  doi: 10.1007/978-3-540-71918-2
– ident: e_1_2_10_26_1
  doi: 10.1109/ICDMW.2015.104
– volume: 3
  start-page: 319
  issue: 5
  year: 1999
  ident: e_1_2_10_27_1
  article-title: NOEMON: Design, implementation and performance results of an intelligent assistant for classifier selection
  publication-title: Intelligent Data Analysis
– ident: e_1_2_10_54_1
– ident: e_1_2_10_9_1
– volume-title: Forecasting in action
  year: 1972
  ident: e_1_2_10_46_1
– ident: e_1_2_10_50_1
  doi: 10.1145/1456650.1456656
– ident: e_1_2_10_45_1
  doi: 10.1016/S0304-4076(00)00030-0
– ident: e_1_2_10_14_1
– ident: e_1_2_10_51_1
  doi: 10.1016/j.ijforecast.2021.07.002
– ident: e_1_2_10_6_1
– ident: e_1_2_10_3_1
– ident: e_1_2_10_11_1
  doi: 10.1214/07-AOAS148
– ident: e_1_2_10_43_1
  doi: 10.1016/j.neucom.2004.03.008
– ident: e_1_2_10_4_1
  doi: 10.1023/A:1010933404324
SSID ssj0007812
Score 2.6127713
Snippet Features of time series are useful in identifying suitable models for forecasting. We present a general framework, labelled Feature‐based FORecast Model...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1476
SubjectTerms Agnosticism
algorithm selection problem
black‐box models
Classification
Forecasting
Machine learning
machine learning interpretability
Mapping
random forest
Time
Time series
visualization
Title Meta‐learning how to forecast time series
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffor.2963
https://www.proquest.com/docview/2844394827
Volume 42
WOSCitedRecordID wos000937724000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-131X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007812
  issn: 0277-6693
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED90E_XFP1OxOiWC-Aepa5O0TR9FHT7oEHGwt5ImmQqyyVr11Y_gZ_STmLTppqAg-NQ-5GjI3eXuene_A9gVwiM0CvsuxkK5lKTSjRVRbswpVUGEKfdlMWwi6nRYrxdf26pK0wtT4kOMf7gZzSjua6PgPM1aE9BQ7dMdYy0-01DHWmxpDepnN-3u5fgejliR6yySlGEYkwp61sOtiva7MZp4mF_91MLQtBf_s8UlWLDuJTop5WEZptSgAbNVdXsD5qpGZP3ulK25yKp3hg4sBvXhChxdqZx_vL3boRJ36H74ivIh0t9Sgmc5MjPpkRFfla1Ct31-e3rh2rkKrqB-RFwa9VPNCIJ5KnX05RGBKQu5pCbfG5OUR6FKWV9IHXVzQZkIfElSzKTkBHt9StagNhgO1DogqWQQc09SwSTFKkyl1IShJvCkj3ngwH51wImwoONm9sVjUsIl40TvOzFn5MDOeOVTCbTxw5pmxaPEqlqWaPtqunsZjhzYK7jxK32iA2vz3Pjrwk2YN-Ply5qyJtTy0bPaghnxkj9ko20rcJ-UVtn_
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK9aLj6pYrRpBfCBrt0n2hSdRS8W2iLTQ25JNsipIK91Vr_4Ef6O_xGQfrYKC4Gn3kCEhM5OZyWS-Adjj3CTUsUMDYy4NSgJheJJIw2OUSsvBlDVE0mzC6XbdwcC7KcBpXguT4kNMLty0ZiTntVZwfSFdn6KGKqfuBCv5mYESVVJkFaF0cdvstycHseMmyc4kS2nbHsmxZ01cz2m_W6Opi_nVUU0sTXPxX2tcgoXMwURnqUQsQ0EOKzCXv2-vQDkvRVb_1bQ4F2UKHqHDDIX6aAWOOzJmH2_vWVuJO3Q_ekXxCKm5JGdRjHRXeqQFWEar0G9e9s5bRtZZweC04RCDOmGgWEEwC4SKv0zCMXVtJqjO-HokYI4tAzfkQsXdjFOXWw1BAuwKwQg2Q0rWoDgcDeU6ICGF5TFTUO4KiqUdCKEIbUVgigZmVhUO8h32eQY7rrtfPPopYDL21bp9vUdV2J2MfEqhNn4YU8uZ5GfKFvnKwur6Xhc7VdhP2PErva9Ca_3d-OvAHSi3ep22377qXm_CvG42n74wq0ExHj_LLZjlL_FDNN7OpO8Tpfjd7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qK9WLj6pYrRpBfCBrt0n2hSexFsVailjobckmWRWkLd1Vr_4Ef6O_xGQfrYKC4Gn3MMOGzExmZifzDcAe5yahjh0aGHNpUBIIw5NEGh6jVFoOpqwhkmETTqfj9vtetwCneS9Mig8x-eGmLSM5r7WBy5EI61PUUBXUnWClPzNQopZnK6ssNW9bvfbkIHbcpNiZVClt2yM59qyJ6znvd280DTG_BqqJp2kt_muNS7CQBZjoLNWIZSjIQQXK-f32CszlrcjqvZo256LMwCN0mKFQH63A8Y2M2cfbezZW4h49DF9RPETqW5KzKEZ6Kj3SCiyjVei1Lu7OL41ssoLBacMhBnXCQImCYBYIlX-ZhGPq2kxQXfH1SMAcWwZuyIXKuxmnLrcaggTYFYIRbIaUrEFxMBzIdUBCCstjpqDcFRRLOxBCMdqKwRQNzKwqHOQ77PMMdlxPv3jyU8Bk7Kt1-3qPqrA7oRylUBs_0NRyIfmZsUW-8rC6v9fFThX2E3H8yu-r1Fo_N_5KuAPlbrPlt68615swr2fNpxfMalCMx89yC2b5S_wYjbcz5fsEY6ndag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta%E2%80%90learning+how+to+forecast+time+series&rft.jtitle=Journal+of+forecasting&rft.au=Talagala%2C+Thiyanga+S.&rft.au=Hyndman%2C+Rob+J.&rft.au=Athanasopoulos%2C+George&rft.date=2023-09-01&rft.issn=0277-6693&rft.eissn=1099-131X&rft.volume=42&rft.issue=6&rft.spage=1476&rft.epage=1501&rft_id=info:doi/10.1002%2Ffor.2963&rft.externalDBID=10.1002%252Ffor.2963&rft.externalDocID=FOR2963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6693&client=summon