IWOA: An improved whale optimization algorithm for optimization problems

Graphical abstract Graphical Abstract AbstractThe whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on the social hunting behavior of humpback whales. WOA suffers premature convergence that causes it to trap in local optima. In order to overco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational design and engineering Jg. 6; H. 3; S. 243 - 259
Hauptverfasser: Mostafa Bozorgi, Seyed, Yazdani, Samaneh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford University Press 01.07.2019
한국CDE학회
Schlagworte:
ISSN:2288-5048, 2288-4300, 2288-5048
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Graphical abstract Graphical Abstract AbstractThe whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on the social hunting behavior of humpback whales. WOA suffers premature convergence that causes it to trap in local optima. In order to overcome this limitation of WOA, in this paper WOA is hybridized with differential evolution (DE) which has good exploration ability for function optimization problems. The proposed method is named Improved WOA (IWOA). The proposed method, combines exploitation of WOA with exploration of DE and therefore provides a promising candidate solution. In addition, IWOA+ is presented in this paper which is an extended form of IWOA. IWOA+ utilizes re-initialization and adaptive parameter which controls the whole search process to obtain better solutions. IWOA and IWOA+ are validated on a set of 25 benchmark functions, and they are compared with PSO, DE, BBO, DE/BBO, PSO/GSA, SCA, MFO and WOA. Furthermore, the effects of dimensionality and population size on the performance of our proposed algorithms are studied. The results demonstrate that IWOA and IWOA+ outperform the other algorithms in terms of quality of the final solution and convergence rate. Highlights The exploration ability of WOA is improved via hybridizing it with DE's mutation.A new adaptive strategy is utilized for balancing the exploration and exploitation abilities.Re-initialization is used to increase the diversity of population.Two improvements are presented for WOA through balancing its exploration and exploitation.The results show that the proposed algorithms can improve the performance of WOA significantly.
AbstractList The whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is pre-sented based on the social hunting behavior of humpback whales. WOA suffers premature convergence that causes it to trap in local optima. In order to overcome this limitation of WOA, in this paper WOA is hybridized with differential evolution (DE) which has good exploration ability for function optimization problems. The proposed method is named Improved WOA (IWOA). The proposed method, combines exploitation of WOA with exploration of DE and therefore provides a promising candidate solution. In addition, IWOA+ is presented in this paper which is an extended form of IWOA. IWOA+ utilizes re-initialization and adaptive parameter which controls the whole search process to obtain better solutions. IWOA and IWOA+ are validated on a set of 25 benchmark functions, and they are compared with PSO, DE, BBO, DE/BBO, PSO/GSA, SCA, MFO and WOA. Furthermore, the effects of dimensionality and population size on the performance of our proposed algorithms are studied. The results demonstrate that IWOA and IWOA+ outperform the other algorithms in terms of quality of the final solution and convergence rate. KCI Citation Count: 52
Graphical abstract Graphical Abstract AbstractThe whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on the social hunting behavior of humpback whales. WOA suffers premature convergence that causes it to trap in local optima. In order to overcome this limitation of WOA, in this paper WOA is hybridized with differential evolution (DE) which has good exploration ability for function optimization problems. The proposed method is named Improved WOA (IWOA). The proposed method, combines exploitation of WOA with exploration of DE and therefore provides a promising candidate solution. In addition, IWOA+ is presented in this paper which is an extended form of IWOA. IWOA+ utilizes re-initialization and adaptive parameter which controls the whole search process to obtain better solutions. IWOA and IWOA+ are validated on a set of 25 benchmark functions, and they are compared with PSO, DE, BBO, DE/BBO, PSO/GSA, SCA, MFO and WOA. Furthermore, the effects of dimensionality and population size on the performance of our proposed algorithms are studied. The results demonstrate that IWOA and IWOA+ outperform the other algorithms in terms of quality of the final solution and convergence rate. Highlights The exploration ability of WOA is improved via hybridizing it with DE's mutation.A new adaptive strategy is utilized for balancing the exploration and exploitation abilities.Re-initialization is used to increase the diversity of population.Two improvements are presented for WOA through balancing its exploration and exploitation.The results show that the proposed algorithms can improve the performance of WOA significantly.
The whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on the social hunting behavior of humpback whales. WOA suffers premature convergence that causes it to trap in local optima. In order to overcome this limitation of WOA, in this paper WOA is hybridized with differential evolution (DE) which has good exploration ability for function optimization problems. The proposed method is named Improved WOA (IWOA). The proposed method, combines exploitation of WOA with exploration of DE and therefore provides a promising candidate solution. In addition, IWOA+ is presented in this paper which is an extended form of IWOA. IWOA+ utilizes re-initialization and adaptive parameter which controls the whole search process to obtain better solutions. IWOA and IWOA+ are validated on a set of 25 benchmark functions, and they are compared with PSO, DE, BBO, DE/BBO, PSO/GSA, SCA, MFO and WOA. Furthermore, the effects of dimensionality and population size on the performance of our proposed algorithms are studied. The results demonstrate that IWOA and IWOA+ outperform the other algorithms in terms of quality of the final solution and convergence rate. Highlights The exploration ability of WOA is improved via hybridizing it with DE's mutation. A new adaptive strategy is utilized for balancing the exploration and exploitation abilities. Re-initialization is used to increase the diversity of population. Two improvements are presented for WOA through balancing its exploration and exploitation. The results show that the proposed algorithms can improve the performance of WOA significantly.
Author Mostafa Bozorgi, Seyed
Yazdani, Samaneh
Author_xml – sequence: 1
  givenname: Seyed
  surname: Mostafa Bozorgi
  fullname: Mostafa Bozorgi, Seyed
  email: s.m.bozorgi@iau-tnb.ac.ir
  organization: Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Samaneh
  surname: Yazdani
  fullname: Yazdani, Samaneh
  email: s_yazdani@iau-tnb.ac.ir
  organization: Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487325$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkE1Lw0AQhhepYK39A55y9ZA4u9kkq7dQ1BYKBal4XLb70W6aZMMmKvrrTVoP6kE8vQPzPMPwnqNR7WqN0CWGCANOr4uokEpHBPBNBCQCICdoTAhjYQKUjb7NZ2jatgUA4IzEPT5G88XzKr8N8jqwVePdq1bB206UOnBNZyv7ITrr6kCUW-dtt6sC4_zPVS9tSl21F-jUiLLV06-coKf7u_VsHi5XD4tZvgwlxWkXGqBJ_2ycxYoomkqhM4qlSnSq-hRa0NhsFDBDMU5lwmIQNNEUZ5QIlRoZT9DV8W7tDd9Ly52wh9w6vvc8f1wveMISluKsZ9mRld61rdeGS9sd3u68sCXHwIcCecGHAvlQIAfC-wJ7lfxSG28r4d__lsKj5F6a__CfySOGIw
CitedBy_id crossref_primary_10_1080_01430750_2021_1909130
crossref_primary_10_1007_s00170_024_14231_1
crossref_primary_10_1007_s11831_023_09928_7
crossref_primary_10_13005_bpj_2288
crossref_primary_10_1007_s00500_020_05340_6
crossref_primary_10_1093_jcde_qwac112
crossref_primary_10_1016_j_advengsoft_2021_103009
crossref_primary_10_1080_01430750_2020_1839550
crossref_primary_10_1109_ACCESS_2021_3055852
crossref_primary_10_1038_s41598_024_76545_0
crossref_primary_10_1038_s41598_025_89458_3
crossref_primary_10_1007_s00521_020_05475_5
crossref_primary_10_1002_ima_22888
crossref_primary_10_3233_ICA_200641
crossref_primary_10_3233_IDT_200047
crossref_primary_10_1093_jcde_qwac100
crossref_primary_10_1016_j_cie_2020_107086
crossref_primary_10_1002_ett_4760
crossref_primary_10_1093_jcde_qwab082
crossref_primary_10_1155_2022_9159130
crossref_primary_10_1002_tee_24205
crossref_primary_10_1016_j_envsoft_2023_105914
crossref_primary_10_1007_s11276_022_03048_z
crossref_primary_10_1002_cpe_7809
crossref_primary_10_1016_j_jclepro_2020_124183
crossref_primary_10_1007_s42235_023_00365_7
crossref_primary_10_1016_j_scs_2021_102858
crossref_primary_10_1111_coin_12310
crossref_primary_10_1088_1742_6596_2532_1_012003
crossref_primary_10_1007_s42044_024_00174_z
crossref_primary_10_32604_cmes_2023_029880
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1088_1361_6501_ad3b2e
crossref_primary_10_1002_ima_22468
crossref_primary_10_1007_s00202_022_01599_0
crossref_primary_10_1109_ACCESS_2022_3141448
crossref_primary_10_3934_math_2025316
crossref_primary_10_1108_IJESM_03_2023_0016
crossref_primary_10_1109_JSEN_2023_3347705
crossref_primary_10_1007_s00366_021_01371_1
crossref_primary_10_1049_tje2_12024
crossref_primary_10_1016_j_bspc_2024_106492
crossref_primary_10_1088_1361_6501_ad3f3b
crossref_primary_10_1109_TGRS_2025_3602639
crossref_primary_10_1109_ACCESS_2022_3185414
crossref_primary_10_1007_s11227_021_04199_0
crossref_primary_10_1080_0305215X_2025_2464862
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1007_s40192_025_00412_7
crossref_primary_10_1109_ACCESS_2020_3044857
crossref_primary_10_1007_s12652_021_03304_8
crossref_primary_10_1007_s10291_025_01814_y
crossref_primary_10_1093_jcde_qwab068
crossref_primary_10_1016_j_ijhydene_2020_08_053
crossref_primary_10_1093_jcde_qwad002
crossref_primary_10_1155_2020_8833866
crossref_primary_10_1371_journal_pone_0331965
crossref_primary_10_1088_1742_6596_3043_1_012084
crossref_primary_10_1155_2020_8860841
crossref_primary_10_1109_ACCESS_2020_3037197
crossref_primary_10_1016_j_compbiomed_2022_105858
crossref_primary_10_1109_JPHOT_2023_3241276
crossref_primary_10_1109_TGRS_2022_3208465
crossref_primary_10_1038_s41598_023_30409_1
crossref_primary_10_1155_2022_1966054
crossref_primary_10_1007_s10462_021_10114_z
crossref_primary_10_1063_5_0237486
crossref_primary_10_1093_jcde_qwaf014
crossref_primary_10_1093_jcde_qwac023
crossref_primary_10_1007_s00500_023_09018_7
crossref_primary_10_1007_s00521_019_04453_w
crossref_primary_10_1016_j_jclepro_2020_124138
crossref_primary_10_1093_jcde_qwad062
crossref_primary_10_1093_jcde_qwac092
crossref_primary_10_1016_j_procir_2024_10_023
crossref_primary_10_3233_JIFS_236930
crossref_primary_10_1093_jcde_qwac014
crossref_primary_10_1002_est2_337
crossref_primary_10_1557_s43579_025_00789_8
crossref_primary_10_1007_s00521_023_08287_5
crossref_primary_10_1007_s13369_019_04016_0
crossref_primary_10_1002_cpe_6639
crossref_primary_10_1007_s11042_024_20121_1
crossref_primary_10_1093_jcde_qwac081
crossref_primary_10_4018_IJAMC_2022010109
crossref_primary_10_1038_s41598_024_67600_x
crossref_primary_10_1109_TVT_2024_3434969
crossref_primary_10_1002_dac_4617
crossref_primary_10_1002_dac_4738
crossref_primary_10_1016_j_eswa_2022_117066
crossref_primary_10_4274_tjd_galenos_2024_73645
crossref_primary_10_1016_j_energy_2024_133185
crossref_primary_10_1155_2022_4373879
crossref_primary_10_1109_ACCESS_2021_3054636
crossref_primary_10_1049_cit2_12387
crossref_primary_10_1002_int_22617
crossref_primary_10_1002_cpe_6629
crossref_primary_10_1155_2022_2904625
Cites_doi 10.1109/4235.985692
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2004.830335
10.1016/j.enconman.2010.01.014
10.1007/s00500-010-0591-1
10.1016/j.neucom.2017.10.037
10.1016/j.knosys.2015.12.022
10.1016/j.asoc.2018.07.055
10.1109/ICMIC.2016.7804267
10.1155/2012/561406
10.1016/j.ast.2017.06.026
10.1016/0378-4754(87)90065-6
10.1109/TEVC.2008.919004
10.1109/4235.771163
10.1002/9780470512517
10.1109/ICCIA.2010.6141614
10.1016/j.advengsoft.2016.01.008
10.1109/NABIC.2009.5393690
10.1504/IJMMNO.2013.055204
10.1016/j.knosys.2015.07.006
10.1016/j.eswa.2017.04.023
10.1016/j.eswa.2018.08.027
10.1016/j.asoc.2014.12.028
10.1016/j.epsr.2017.09.001
10.1016/j.cnsns.2012.05.010
10.1016/j.swevo.2017.05.001
10.1016/j.engappai.2013.11.003
10.1109/ACCESS.2017.2695498
10.1016/j.jcde.2017.12.006
10.1016/j.advengsoft.2013.12.007
10.1061/(ASCE)CP.1943-5487.0000163
ContentType Journal Article
Copyright Society for Computational Design and Engineering 2018
Copyright_xml – notice: Society for Computational Design and Engineering 2018
DBID TOX
AAYXX
CITATION
ACYCR
DOI 10.1016/j.jcde.2019.02.002
DatabaseName Oxford Journals Open Access Collection
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2288-5048
EndPage 259
ExternalDocumentID oai_kci_go_kr_ARTI_5858617
10_1016_j_jcde_2019_02_002
10.1016/j.jcde.2019.02.002
GroupedDBID .UV
0R~
0SF
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAPXW
AAVAP
AAXUO
ABEJV
ABGNP
ABMAC
ABPTD
ABXVV
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
H13
JDI
KQ8
KSI
M41
M~E
NCXOZ
O9-
OK1
ROL
ROX
SSZ
TOX
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
IAO
4.4
ABJCF
ACYCR
ADMLS
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRF
GNUQQ
HCIFZ
IGS
IPNFZ
ITC
M7S
ML0
PHGZM
PHGZT
PIMPY
PMFND
PTHSS
RIG
ID FETCH-LOGICAL-c416t-f045cde373d2d46cae741cd5e6d41caea43fbd08f4116c5830a45e41742ad6fc3
ISICitedReferencesCount 203
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474297500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2288-5048
2288-4300
IngestDate Sat May 31 03:24:04 EDT 2025
Sat Nov 29 03:52:52 EST 2025
Tue Nov 18 22:34:03 EST 2025
Tue Jan 28 07:47:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Differential evolution
Swarm intelligence
Meta-heuristic algorithm
Whale optimization algorithm
Optimization
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-f045cde373d2d46cae741cd5e6d41caea43fbd08f4116c5830a45e41742ad6fc3
OpenAccessLink http://dx.doi.org/10.1016/j.jcde.2019.02.002
PageCount 17
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_5858617
crossref_citationtrail_10_1016_j_jcde_2019_02_002
crossref_primary_10_1016_j_jcde_2019_02_002
oup_primary_10_1016_j_jcde_2019_02_002
PublicationCentury 2000
PublicationDate 20190701
2019-07-01
2019-07
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 20190701
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational design and engineering
PublicationYear 2019
Publisher Oxford University Press
한국CDE학회
Publisher_xml – name: Oxford University Press
– name: 한국CDE학회
References Ghasemi (2020071700170525200_b0075) 2014; 29
Ling (2020071700170525200_b0110) 2017; 5
Mirjalili (2020071700170525200_b0125) 2015; 89
Brest (2020071700170525200_b0025) 2006
Findler (2020071700170525200_b0065) 1987; 29
Yao (2020071700170525200_b0170) 1999; 3
Gandomi (2020071700170525200_b0070) 2012; 17
Wu (2020071700170525200_b0160) 2018; 275
Gong (2020071700170525200_b0080) 2011; 15
Kaur (2020071700170525200_b0100) 2018
Simon (2020071700170525200_b0150) 2008
Hadavandi (2020071700170525200_b0085) 2018; 72
Mirjalili (2020071700170525200_b0130) 2016; 96
Clerc (2020071700170525200_b0035) 2002; 6
Eberhart (2020071700170525200_b0050) 2004; 8
Mafarja (2020071700170525200_b0120) 2017
Sun (2020071700170525200_b0155) 2018; 114
Aziz (2020071700170525200_b0010) 2017; 83
El-abd (2020071700170525200_b0055) 2017; 37
Engelbrecht (2020071700170525200_b0060) 2007
Yang (2020071700170525200_b0165) 2009
Bentouati (2020071700170525200_b0020) 2016
Lucas (2020071700170525200_b0115) 2010; 51
Cheng (2020071700170525200_b0030) 2012; 26
Aljarah (2020071700170525200_b0005) 2018
Derrac (2020071700170525200_b0045) 2011; 1
Mirjalili (2020071700170525200_b0140) 2016; 95
ben oualid Medani (2020071700170525200_b0015) 2018; 163
Das (2020071700170525200_b0040) 2008; 94
Lin (2020071700170525200_b0105) 2012; 2012
Mirjalili (2020071700170525200_b0135) 2010
Hafezi (2020071700170525200_b0090) 2015; 29
Mirjalili (2020071700170525200_b0145) 2014; 69
Yu (2020071700170525200_b0175) 2017; 69
Jamil (2020071700170525200_b0095) 2013; 4
References_xml – volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 2020071700170525200_b0035
  article-title: The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985692
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 2020071700170525200_b0045
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 8
  start-page: 201
  issue: 3
  year: 2004
  ident: 2020071700170525200_b0050
  article-title: Guest editorial special issue on particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.830335
– volume: 51
  start-page: 1407
  issue: 7
  year: 2010
  ident: 2020071700170525200_b0115
  article-title: Application of an imperialist competitive algorithm to the design of a linear induction motor
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2010.01.014
– volume: 15
  start-page: 645
  issue: 4
  year: 2011
  ident: 2020071700170525200_b0080
  article-title: DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization
  publication-title: Soft Computing
  doi: 10.1007/s00500-010-0591-1
– volume: 275
  start-page: 2055
  year: 2018
  ident: 2020071700170525200_b0160
  article-title: Path planning for solar-powered UAV in urban environment
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.037
– volume: 96
  start-page: 120
  year: 2016
  ident: 2020071700170525200_b0130
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 72
  start-page: 1
  year: 2018
  ident: 2020071700170525200_b0085
  article-title: A Grey Wolf Optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2018.07.055
– volume-title: Soft Computing
  year: 2018
  ident: 2020071700170525200_b0005
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
– start-page: 1048
  volume-title: 2016 8th international conference on modelling, identification and control (ICMIC)
  year: 2016
  ident: 2020071700170525200_b0020
  doi: 10.1109/ICMIC.2016.7804267
– volume: 2012
  start-page: 561406
  year: 2012
  ident: 2020071700170525200_b0105
  article-title: Hybrid particle swarm optimization and its application to multimodal 3D medical image registration
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2012/561406
– volume: 69
  start-page: 149
  year: 2017
  ident: 2020071700170525200_b0175
  article-title: Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2017.06.026
– volume: 29
  start-page: 41
  issue: 1
  year: 1987
  ident: 2020071700170525200_b0065
  article-title: Pattern search for optimization
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/0378-4754(87)90065-6
– start-page: 215
  volume-title: 2006 IEEE int. conf. evol. comput.
  year: 2006
  ident: 2020071700170525200_b0025
  article-title: Self-adaptive differential evolution algorithm in constrained real-parameter optimization
– volume-title: IEEE Transactions on Evolutionary Computation
  year: 2008
  ident: 2020071700170525200_b0150
  article-title: Biogeography-based optimization
  doi: 10.1109/TEVC.2008.919004
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 2020071700170525200_b0170
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771163
– volume-title: Computational intelligence: An introduction
  year: 2007
  ident: 2020071700170525200_b0060
  doi: 10.1002/9780470512517
– start-page: 374
  volume-title: Proceedings of ICCIA 2010 - 2010 international conference on computer and information application
  year: 2010
  ident: 2020071700170525200_b0135
  article-title: A new hybrid PSOGSA algorithm for function optimization
  doi: 10.1109/ICCIA.2010.6141614
– volume: 95
  start-page: 51
  year: 2016
  ident: 2020071700170525200_b0140
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 214
  volume-title: 2009 World congress on nature & biologically inspired computing (NaBIC)
  year: 2009
  ident: 2020071700170525200_b0165
  article-title: Cuckoo search via levy flights
  doi: 10.1109/NABIC.2009.5393690
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 2020071700170525200_b0095
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
  doi: 10.1504/IJMMNO.2013.055204
– volume: 89
  start-page: 228
  year: 2015
  ident: 2020071700170525200_b0125
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.07.006
– volume: 83
  start-page: 242
  year: 2017
  ident: 2020071700170525200_b0010
  article-title: Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.023
– volume: 114
  start-page: 563
  year: 2018
  ident: 2020071700170525200_b0155
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.027
– volume: 29
  start-page: 196
  year: 2015
  ident: 2020071700170525200_b0090
  article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2014.12.028
– volume: 163
  start-page: 696
  year: 2018
  ident: 2020071700170525200_b0015
  article-title: Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2017.09.001
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 2020071700170525200_b0070
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 37
  start-page: 27
  year: 2017
  ident: 2020071700170525200_b0055
  article-title: Global-best brain storm optimization algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.05.001
– volume: 29
  start-page: 54
  year: 2014
  ident: 2020071700170525200_b0075
  article-title: A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2013.11.003
– volume: 5
  start-page: 6168
  year: 2017
  ident: 2020071700170525200_b0110
  article-title: Lévy flight trajectory-based whale optimization algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2695498
– volume-title: Journal of Computational Design and Engineering
  year: 2018
  ident: 2020071700170525200_b0100
  article-title: Chaotic whale optimization algorithm
  doi: 10.1016/j.jcde.2017.12.006
– volume: 69
  start-page: 46
  year: 2014
  ident: 2020071700170525200_b0145
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 26
  start-page: 612
  year: 2012
  ident: 2020071700170525200_b0030
  article-title: Hybrid artificial intelligence-based PBA for benchmark functions and facility layout design optimization
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000163
– volume: 94
  start-page: 113
  issue: 2008
  year: 2008
  ident: 2020071700170525200_b0040
  article-title: Swarm intelligence algorithms in bioinformatics
  publication-title: Studies in Computational Intelligence
– start-page: 1
  volume-title: Neurocomputing
  year: 2017
  ident: 2020071700170525200_b0120
  article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection
SSID ssj0001723019
ssib053376903
Score 2.54737
Snippet Graphical abstract Graphical Abstract AbstractThe whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on...
The whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is presented based on the social hunting behavior of humpback...
The whale optimization algorithm (WOA) is a new bio-inspired meta-heuristic algorithm which is pre-sented based on the social hunting behavior of humpback...
SourceID nrf
crossref
oup
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 243
SubjectTerms 기계공학
Title IWOA: An improved whale optimization algorithm for optimization problems
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002487325
Volume 6
WOSCitedRecordID wos000474297500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computational Design and Engineering , 2019, 6(3), , pp.243-259
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2288-5048
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723019
  issn: 2288-5048
  databaseCode: TOX
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lhQMX3ohQWlkIcYmM4vX61VuoQO2lRWoQua3W-8ijiV05oWorfnxnH3YcUKtw4GJH67WlzDcZz0xmvkHoYwpeLs8SiE2wTH2Sk8jPQoL9OJEhRBN5xhJhhk0kp6fpaJR973R-170wV_OkKNLr6-zyv0INawC2bp39B7ibh8ICfAbQ4Qiww3Er4E9-ng1cum9qMga6wHzCdBEhmIeF67vssfm4rKarycIUGm5cckNmlvc4rtwMgqiTiMKUgJj_IOSa27DBsQTvU7Hel_K2rMamcuBc3riGKm1s2K2wU6V652zBCjlppyFM51M7DXFPe6N9yxhzhjEAFfUtr2Zte-OWioVtO2q5m9wrGVvS8L-svU08zD7PuNCMp0Fm6Vfx-t3WVBw-tH0HPcJJlOmCwOHZaJ2hSyA8CzLXaWWLAv-8dcOb2SkqZfskWy7K8Dl66iDyBlYnXqCOLF6iZy7O8JwVX75Cx1pFDr1B4dUK4hkF8dpa4DUK4oHMNy_VCvIa_fj2dXh07LuJGj4Hx3vlK3Dg4RuESSiwIDFnEhxKLiIZCzgzyUioctFPFQmCmEdp2GckkgR-z5iJWPHwDdotykK-RR4sShVJqeN9kivCFCYJlzlhseYQzLsoqCVDuaOb11NP5rSuK5xRLU2qpUn7mII0u6jX3HNpyVYe3P0BBE4v-JRqjnR9Hpf0oqIQCZ5QCINT8M676BPgscXT3m27cQ89Wev_e7S7qn7JffSYX62my-rA5HQOjCLdAUJJk2k
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IWOA%3A+An+improved+whale+optimization+algorithm+for+optimization+problems&rft.jtitle=Journal+of+computational+design+and+engineering&rft.au=Mostafa+Bozorgi%2C+Seyed&rft.au=Yazdani%2C+Samaneh&rft.date=2019-07-01&rft.pub=Oxford+University+Press&rft.eissn=2288-5048&rft.volume=6&rft.issue=3&rft.spage=243&rft.epage=259&rft_id=info:doi/10.1016%2Fj.jcde.2019.02.002&rft.externalDocID=10.1016%2Fj.jcde.2019.02.002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2288-5048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2288-5048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2288-5048&client=summon