Multiresolution equivariant graph variational autoencoder

In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs higher order message passing to encode the graph whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology Jg. 4; H. 1; S. 15031 - 15054
Hauptverfasser: Hy, Truong Son, Kondor, Risi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.03.2023
Schlagworte:
ISSN:2632-2153, 2632-2153
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs higher order message passing to encode the graph while learning to partition it into mutually exclusive clusters and coarsening into a lower resolution that eventually creates a hierarchy of latent distributions. MGVAE then constructs a hierarchical generative model to variationally decode into a hierarchy of coarsened graphs. Importantly, our proposed framework is end-to-end permutation equivariant with respect to node ordering. MGVAE achieves competitive results with several generative tasks including general graph generation, molecular generation, unsupervised molecular representation learning to predict molecular properties, link prediction on citation graphs, and graph-based image generation. Our implementation is available at https://github.com/HyTruongSon/MGVAE .
AbstractList In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs higher order message passing to encode the graph while learning to partition it into mutually exclusive clusters and coarsening into a lower resolution that eventually creates a hierarchy of latent distributions. MGVAE then constructs a hierarchical generative model to variationally decode into a hierarchy of coarsened graphs. Importantly, our proposed framework is end-to-end permutation equivariant with respect to node ordering. MGVAE achieves competitive results with several generative tasks including general graph generation, molecular generation, unsupervised molecular representation learning to predict molecular properties, link prediction on citation graphs, and graph-based image generation. Our implementation is available at https://github.com/HyTruongSon/MGVAE .
In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs higher order message passing to encode the graph while learning to partition it into mutually exclusive clusters and coarsening into a lower resolution that eventually creates a hierarchy of latent distributions. MGVAE then constructs a hierarchical generative model to variationally decode into a hierarchy of coarsened graphs. Importantly, our proposed framework is end-to-end permutation equivariant with respect to node ordering. MGVAE achieves competitive results with several generative tasks including general graph generation, molecular generation, unsupervised molecular representation learning to predict molecular properties, link prediction on citation graphs, and graph-based image generation. Our implementation is available at https://github.com/HyTruongSon/MGVAE .
Author Kondor, Risi
Hy, Truong Son
Author_xml – sequence: 1
  givenname: Truong Son
  orcidid: 0000-0002-5092-3757
  surname: Hy
  fullname: Hy, Truong Son
  organization: University of Chicago Department of Computer Science, Chicago, IL 60637, United States of America
– sequence: 2
  givenname: Risi
  surname: Kondor
  fullname: Kondor, Risi
BookMark eNp9kElPwzAUhC1UJErpnWMkroQ-L3GSI6rYpCIucLa8pbgKces4SPx7koZNSHCy_Twzmvcdo0njG4vQKYYLDEWxIJySlOCMLqTWYIoDNP0aTX7cj9C8bTcAQDJMMwJTVN53dXTBtr7uovNNYnede5XBySYm6yC3z8n-NfzJOpFd9LbR3thwgg4rWbd2_nHO0NP11ePyNl093NwtL1epZpjHVCmQoLSyOWUq4xnVBCyrCpUzVpWlZdqUrK_GsaI8M2VBgShcKSBAbW4rOkN3Y67xciO2wb3I8Ca8dGI_8GEtZIhO11ZYLIFSSyXjmpmKK0XyPs1UlBnFAfqsszFrG_yus20UG9-FfrFWkLwoSZ5zTnoVH1U6-LYNthLaxT2BGKSrBQYxUBcDVjFgFSP13gi_jJ91_7Gcjxbnt99l_pS_A4yflKw
CODEN MLSTCK
CitedBy_id crossref_primary_10_1088_2632_2153_ad5bbf
crossref_primary_10_1007_s00466_025_02633_1
crossref_primary_10_1088_2632_2153_ad3ee4
crossref_primary_10_1137_24M166053X
crossref_primary_10_3390_ijms25116186
Cites_doi 10.1109/TPAMI.2007.1115
10.1145/321694.321699
10.1007/978-3-030-01418-6_41
10.1038/sdata.2014.22
10.1103/PhysRev.136.B864
10.1021/ci300415d
10.1007/s10618-010-0210-x
10.1063/1.5024797
10.1021/acs.jcim.5b00559
10.3389/fdata.2019.00003
10.1609/aimag.v29i3.2157
10.1109_TNN.2008.2005605
10.5555/944919.944937
10.1021/acscentsci.7b00572
10.1007/s10822-016-9938-8
10.1016/j.acha.2010.04.005
10.1016/j.acha.2006.04.004
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: 2023 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1088/2632-2153/acc0d8
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID oai_doaj_org_article_e1a033e3a46c4df6bb2702bdf34db600
10_1088_2632_2153_acc0d8
mlstacc0d8
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c416t-bb0a0bcbe734b5653c20e4f8b744f99e4cd9415361b365d98302b1fb0203e7ef3
IEDL.DBID O3W
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957021100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2632-2153
IngestDate Tue Oct 14 19:06:00 EDT 2025
Fri Jul 25 03:53:00 EDT 2025
Sat Nov 29 02:22:47 EST 2025
Tue Nov 18 22:22:10 EST 2025
Sun Aug 18 14:40:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-bb0a0bcbe734b5653c20e4f8b744f99e4cd9415361b365d98302b1fb0203e7ef3
Notes MLST-100828.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5092-3757
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/acc0d8
PQID 2789277662
PQPubID 4916454
PageCount 24
ParticipantIDs crossref_citationtrail_10_1088_2632_2153_acc0d8
proquest_journals_2789277662
crossref_primary_10_1088_2632_2153_acc0d8
iop_journals_10_1088_2632_2153_acc0d8
doaj_primary_oai_doaj_org_article_e1a033e3a46c4df6bb2702bdf34db600
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fout (mlstacc0d8bib9) 2017
You (mlstacc0d8bib16) 2018
Kipf (mlstacc0d8bib59) 2016
Liu (mlstacc0d8bib19) 2019; vol 32
Maron (mlstacc0d8bib15) 2019
Xu (mlstacc0d8bib53) 2022
LeCun (mlstacc0d8bib76) 1999
Xu (mlstacc0d8bib13) 2019
Ingraham (mlstacc0d8bib45) 2017
Vahdat (mlstacc0d8bib48) 2020; vol 33
Niepert (mlstacc0d8bib2) 2016
Gómez-Bombarelli (mlstacc0d8bib21) 2018; 4
Sterling (mlstacc0d8bib66) 2015; 55
Liu (mlstacc0d8bib67) 2018; vol 31
Glorot (mlstacc0d8bib74)
Ranganath (mlstacc0d8bib44) 2016
Cohen (mlstacc0d8bib26) 2016; vol 48
Cheng (mlstacc0d8bib12) 2015
Liao (mlstacc0d8bib18) 2019; vol 32
Dhillon (mlstacc0d8bib37) 2007; 29
Edmonds (mlstacc0d8bib63) 1972; 19
Rue (mlstacc0d8bib62) 2005; vol 104
Chen (mlstacc0d8bib11) 2014
Xie (mlstacc0d8bib52) 2022
Paszke (mlstacc0d8bib90) 2019; vol 32
Dieng (mlstacc0d8bib81) 2019
Kondor (mlstacc0d8bib28) 2018
Cohen (mlstacc0d8bib27) 2017
Koller (mlstacc0d8bib61) 2009
Hy (mlstacc0d8bib8) 2018; 148
Kriege (mlstacc0d8bib84) 2016; vol 16
Maron (mlstacc0d8bib32) 2019
Rustamov (mlstacc0d8bib10) 2013; vol 26
Dai (mlstacc0d8bib20) 2020
Blei (mlstacc0d8bib43) 2003; 3
Si (mlstacc0d8bib39) 2014; vol 27
Scarselli (mlstacc0d8bib1) 2009; 20
Prakash Dwivedi (mlstacc0d8bib85) 2020
Klushyn (mlstacc0d8bib46) 2019; vol 32
Maddison (mlstacc0d8bib56) 2014; vol 27
Lin (mlstacc0d8bib80) 2018; vol 31
Zhou (mlstacc0d8bib41) 2019; 2
Serviansky (mlstacc0d8bib30) 2020; vol 33
Veličković (mlstacc0d8bib87) 2018
Jin (mlstacc0d8bib24) 2018
Shin (mlstacc0d8bib40) 2012
Ruddigkeit (mlstacc0d8bib64) 2012; 52
Bengio (mlstacc0d8bib50) 2021; vol 34
Kingma (mlstacc0d8bib68) 2015
Sen (mlstacc0d8bib69) 2008; 29
Dhillon (mlstacc0d8bib36) 2005
Battaglia (mlstacc0d8bib4) 2016; vol 29
Kearnes (mlstacc0d8bib6) 2016; 30
Wainwright (mlstacc0d8bib58) 2005
Shervashidze (mlstacc0d8bib83) 2011; 12
Monti (mlstacc0d8bib88) 2017
Li (mlstacc0d8bib17) 2018
Henning Thiede (mlstacc0d8bib25) 2020
Ma (mlstacc0d8bib89) 2019
Perozzi (mlstacc0d8bib73) 2014
Zaheer (mlstacc0d8bib29) 2017; vol 30
Goodfellow (mlstacc0d8bib42) 2014; vol 27
Tang (mlstacc0d8bib72) 2011; 23
Coifman (mlstacc0d8bib34) 2006; 21
Kingma (mlstacc0d8bib54) 2014
Maron (mlstacc0d8bib31) 2020
Jain (mlstacc0d8bib51) 2022
Bengio (mlstacc0d8bib49) 2021
Seitzer (mlstacc0d8bib78) 2020
De Cao (mlstacc0d8bib23) 2018
Maron (mlstacc0d8bib33) 2019; vol 32
Radford (mlstacc0d8bib75) 2016
Gumbel (mlstacc0d8bib55) 1954; 33
Wu (mlstacc0d8bib47) 2020; vol 33
Jang (mlstacc0d8bib57) 2017
Gilmer (mlstacc0d8bib7) 2017
Yang (mlstacc0d8bib86) 2020; vol 33
Srivastava (mlstacc0d8bib79) 2017; vol 30
Duvenaud (mlstacc0d8bib5) 2015; 28
Chiang (mlstacc0d8bib38) 2012
Li (mlstacc0d8bib3) 2016
You (mlstacc0d8bib70) 2018
Hohenberg (mlstacc0d8bib82) 1964; 136
Ying (mlstacc0d8bib14) 2018; vol 31
Simonovsky (mlstacc0d8bib22) 2018
Hammond (mlstacc0d8bib35) 2011; 30
Shi (mlstacc0d8bib71) 2020
Heusel (mlstacc0d8bib77) 2017; vol 30
Murphy (mlstacc0d8bib60) 2012
Ramakrishnan (mlstacc0d8bib65) 2014; 1
References_xml – volume: 29
  start-page: 1944
  year: 2007
  ident: mlstacc0d8bib37
  article-title: Weighted graph cuts without eigenvectors a multilevel approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1115
– start-page: pp 4212
  year: 2019
  ident: mlstacc0d8bib89
  article-title: Disentangled graph convolutional networks
– volume: vol 31
  year: 2018
  ident: mlstacc0d8bib67
  article-title: Constrained graph variational autoencoders for molecule design
– volume: 19
  start-page: 248
  year: 1972
  ident: mlstacc0d8bib63
  article-title: Theoretical improvements in algorithmic efficiency for network flow problems
  publication-title: J. ACM
  doi: 10.1145/321694.321699
– volume: vol 48
  start-page: pp 2990
  year: 2016
  ident: mlstacc0d8bib26
  article-title: Group equivariant convolutional networks
– year: 2018
  ident: mlstacc0d8bib87
  article-title: Graph attention networks
– volume: vol 32
  year: 2019
  ident: mlstacc0d8bib19
  article-title: Graph normalizing flows
– year: 2018
  ident: mlstacc0d8bib70
  article-title: Code for GraphRNN: generating realistic graphs with deep auto-regressive model
– year: 2022
  ident: mlstacc0d8bib52
  article-title: Crystal diffusion variational autoencoder for periodic material generation
– volume: vol 31
  year: 2018
  ident: mlstacc0d8bib14
  article-title: Hierarchical graph representation learning with differentiable pooling
– start-page: pp 249
  ident: mlstacc0d8bib74
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: p 5
  year: 2017
  ident: mlstacc0d8bib27
  article-title: Steerable CNNs
– volume: vol 27
  year: 2014
  ident: mlstacc0d8bib56
  article-title: A* sampling
– start-page: pp 215
  year: 2012
  ident: mlstacc0d8bib40
  article-title: Multi-scale link prediction
– year: 2018
  ident: mlstacc0d8bib22
  article-title: GraphVAE: towards generation of small graphs using variational autoencoders
  doi: 10.1007/978-3-030-01418-6_41
– volume: 33
  year: 1954
  ident: mlstacc0d8bib55
  article-title: Statistical theory of extreme values and some practical applications: a series of lectures
– volume: vol 29
  year: 2016
  ident: mlstacc0d8bib4
  article-title: Interaction networks for learning about objects, relations and physics
– year: 2016
  ident: mlstacc0d8bib59
  article-title: Variational graph auto-encoders
– start-page: pp 1263
  year: 2017
  ident: mlstacc0d8bib7
  article-title: Neural message passing for quantum chemistry
– volume: vol 32
  year: 2019
  ident: mlstacc0d8bib46
  article-title: Learning hierarchical priors in VAEs
– year: 2005
  ident: mlstacc0d8bib58
  article-title: A variational principle for graphical models
– year: 2009
  ident: mlstacc0d8bib61
– volume: 1
  year: 2014
  ident: mlstacc0d8bib65
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.22
– volume: vol 33
  start-page: pp 5933
  year: 2020
  ident: mlstacc0d8bib47
  article-title: Stochastic normalizing flows
– volume: vol 26
  year: 2013
  ident: mlstacc0d8bib10
  article-title: Wavelets on graphs via deep learning
– volume: vol 30
  year: 2017
  ident: mlstacc0d8bib29
  article-title: Deep sets
– year: 2020
  ident: mlstacc0d8bib25
  article-title: The general theory of permutation equivariant neural networks and higher order graph variational encoders
– volume: vol 104
  year: 2005
  ident: mlstacc0d8bib62
  article-title: Gaussian Markov random fields: theory and applications
– volume: vol 34
  start-page: pp 27381
  year: 2021
  ident: mlstacc0d8bib50
  article-title: Flow network based generative models for non-iterative diverse candidate generation
– year: 2015
  ident: mlstacc0d8bib68
  article-title: Adam: a method for stochastic optimization
– start-page: pp 629
  year: 2005
  ident: mlstacc0d8bib36
  article-title: A fast kernel-based multilevel algorithm for graph clustering
– volume: vol 31
  year: 2018
  ident: mlstacc0d8bib80
  article-title: PacGAN: the power of two samples in generative adversarial networks
– volume: 136
  start-page: 864
  year: 1964
  ident: mlstacc0d8bib82
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 52
  start-page: 2864
  year: 2012
  ident: mlstacc0d8bib64
  article-title: Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17
  publication-title: J. Chem. Inf. Modeling
  doi: 10.1021/ci300415d
– volume: 23
  start-page: 447
  year: 2011
  ident: mlstacc0d8bib72
  article-title: Leveraging social media networks for classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0210-x
– year: 2018
  ident: mlstacc0d8bib17
  article-title: Learning deep generative models of graphs
– year: 1999
  ident: mlstacc0d8bib76
  article-title: The MNIST database of handwritten digits
– start-page: pp 5425
  year: 2017
  ident: mlstacc0d8bib88
  article-title: Geometric deep learning on graphs and manifolds using mixture model CNNs
– volume: 148
  year: 2018
  ident: mlstacc0d8bib8
  article-title: Predicting molecular properties with covariant compositional networks
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024797
– volume: 55
  start-page: 2324
  year: 2015
  ident: mlstacc0d8bib66
  article-title: Zinc 15—ligand discovery for everyone
  publication-title: J. Chem. Inf. Modeling
  doi: 10.1021/acs.jcim.5b00559
– volume: 2
  start-page: 3
  year: 2019
  ident: mlstacc0d8bib41
  article-title: Misc-GAN: a multi-scale generative model for graphs
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2019.00003
– volume: 29
  start-page: 93
  year: 2008
  ident: mlstacc0d8bib69
  article-title: Collective classification in network data
  publication-title: AI Mag.
  doi: 10.1609/aimag.v29i3.2157
– volume: 20
  start-page: 61
  year: 2009
  ident: mlstacc0d8bib1
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109_TNN.2008.2005605
– year: 2020
  ident: mlstacc0d8bib71
  article-title: GraphAF: a flow-based autoregressive model for molecular graph generation
– volume: 3
  start-page: 993
  year: 2003
  ident: mlstacc0d8bib43
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/944919.944937
– year: 2022
  ident: mlstacc0d8bib53
  article-title: GeoDiff: a geometric diffusion model for molecular conformation generation
– volume: vol 33
  start-page: pp 22080
  year: 2020
  ident: mlstacc0d8bib30
  article-title: Set2Graph: learning graphs from sets
– volume: vol 30
  year: 2017
  ident: mlstacc0d8bib79
  article-title: VEEGAN: reducing mode collapse in GANs using implicit variational learning
– volume: 4
  start-page: 268
  year: 2018
  ident: mlstacc0d8bib21
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00572
– start-page: pp 2323
  year: 2018
  ident: mlstacc0d8bib24
  article-title: Junction tree variational autoencoder for molecular graph generation
– year: 2019
  ident: mlstacc0d8bib15
  article-title: Invariant and equivariant graph networks
– year: 2021
  ident: mlstacc0d8bib49
  article-title: GFlowNet foundations
– year: 2017
  ident: mlstacc0d8bib57
  article-title: Categorical reparameterization with Gumbel-Softmax
– start-page: pp 2014
  year: 2016
  ident: mlstacc0d8bib2
  article-title: Learning convolutional neural networks for graphs
– volume: 30
  start-page: 595
  year: 2016
  ident: mlstacc0d8bib6
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J. Comput.-Aided Mol. Des.
  doi: 10.1007/s10822-016-9938-8
– year: 2015
  ident: mlstacc0d8bib12
  article-title: Deep Haar scattering networks
– year: 2018
  ident: mlstacc0d8bib28
  article-title: Covariant compositional networks for learning graphs
– year: 2014
  ident: mlstacc0d8bib54
  article-title: Auto-encoding variational Bayes
– volume: vol 27
  year: 2014
  ident: mlstacc0d8bib42
  article-title: Generative adversarial nets
– volume: vol 32
  year: 2019
  ident: mlstacc0d8bib33
  article-title: Provably powerful graph networks
– start-page: pp 663
  year: 2012
  ident: mlstacc0d8bib60
  article-title: Chapter 19: Undirected graphical models (Markov random fields)
– volume: vol 32
  year: 2019
  ident: mlstacc0d8bib90
  article-title: PyTorch: an imperative style, high-performance deep learning library
– start-page: pp 701
  year: 2014
  ident: mlstacc0d8bib73
  article-title: DeepWalk: online learning of social representations
– year: 2019
  ident: mlstacc0d8bib81
  article-title: Prescribed generative adversarial networks
– volume: vol 33
  start-page: pp 20286
  year: 2020
  ident: mlstacc0d8bib86
  article-title: Factorizable graph convolutional networks
– year: 2016
  ident: mlstacc0d8bib3
  article-title: Gated graph sequence neural networks
– start-page: pp 4363
  year: 2019
  ident: mlstacc0d8bib32
  article-title: On the universality of invariant networks
– year: 2018
  ident: mlstacc0d8bib23
  article-title: MolGAN: an implicit generative model for small molecular graphs
– volume: vol 27
  year: 2014
  ident: mlstacc0d8bib39
  article-title: Multi-scale spectral decomposition of massive graphs
– year: 2016
  ident: mlstacc0d8bib75
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– start-page: pp 324
  year: 2016
  ident: mlstacc0d8bib44
  article-title: Hierarchical variational models
– start-page: pp 5708
  year: 2018
  ident: mlstacc0d8bib16
  article-title: GraphRNN: generating realistic graphs with deep auto-regressive models
– volume: vol 16
  start-page: pp 1623
  year: 2016
  ident: mlstacc0d8bib84
  article-title: On valid optimal assignment kernels and applications to graph classification
– start-page: pp 6533
  year: 2017
  ident: mlstacc0d8bib9
  article-title: Protein interface prediction using graph convolutional networks
– start-page: pp 2302
  year: 2020
  ident: mlstacc0d8bib20
  article-title: Scalable deep generative modeling for sparse graphs
– volume: 30
  start-page: 129
  year: 2011
  ident: mlstacc0d8bib35
  article-title: Wavelets on graphs via spectral graph theory
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.04.005
– start-page: pp 9786
  year: 2022
  ident: mlstacc0d8bib51
  article-title: Biological sequence design with GFlowNets
– start-page: pp 1607
  year: 2017
  ident: mlstacc0d8bib45
  article-title: Variational inference for sparse and undirected models
– start-page: pp 6734
  year: 2020
  ident: mlstacc0d8bib31
  article-title: On learning sets of symmetric elements
– volume: 12
  start-page: 2539
  year: 2011
  ident: mlstacc0d8bib83
  article-title: Weisfeiler-Lehman graph kernels
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: mlstacc0d8bib85
  article-title: Benchmarking graph neural networks
– volume: vol 32
  year: 2019
  ident: mlstacc0d8bib18
  article-title: Efficient graph generation with graph recurrent attention networks
– volume: vol 33
  start-page: pp 19667
  year: 2020
  ident: mlstacc0d8bib48
  article-title: NVAE: a deep hierarchical variational autoencoder
– year: 2014
  ident: mlstacc0d8bib11
  article-title: Unsupervised deep Haar scattering on graphs
– year: 2019
  ident: mlstacc0d8bib13
  article-title: Graph wavelet neural network
– start-page: pp 615
  year: 2012
  ident: mlstacc0d8bib38
  article-title: Scalable clustering of signed networks using balance normalized cut
– year: 2020
  ident: mlstacc0d8bib78
  article-title: PyTorch-FID: FID Score for PyTorch (Version 0.1.1)
– volume: 28
  start-page: 2224
  year: 2015
  ident: mlstacc0d8bib5
  article-title: Convolutional networks on graphs for learning molecular fingerprints
– volume: vol 30
  year: 2017
  ident: mlstacc0d8bib77
  article-title: GANs trained by a two time-scale update rule converge to a local Nash equilibrium
– volume: 21
  start-page: 53
  year: 2006
  ident: mlstacc0d8bib34
  article-title: Diffusion wavelets
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.004
SSID ssj0002513520
Score 2.3573608
Snippet In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate...
In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15031
SubjectTerms Coarsening
graph neural networks
graph variational autoencoders
Graphs
hierarchical generative models
Image processing
Learning
Message passing
Molecular properties
molecule generation
Permutations
supervised and unsupervised molecular representation learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxcDCN6JQUAYYGKI6tRvHIyAqBlQxAOoW-eyzVAm1pV-_n7OTFhBSWRgT2Yr1zud3jn3vGLvystBOokohtzqVTnXTAsmvjOQeXWY0xKy0tyfV7xeDgX7-Vuor3Amr5IEr4NqYGS4ECiNzK53PAUIGFTgvpANi67D6cqW_babCGkysTZEFr88lyZPaQZc8JX4TbWMtd8UPHopy_cQuw_Hk15ociaa3z3brCDG5rUZ2wLZwdMj2VtUXktoZj5iOubO0W64nT4Ifi-GStr6EVRJ1qJP4VP3sS8xiPg6ilQ6nx-y19_By_5jWhRBSS_HSPAXghoMFVEICRWDCdjhKX4CS0muN0jpNRCzyDETedTpoekHmIZwyokIvTlhjNB7hKUskeDRZx2WOgzToKD7oAlF8ZjLOUUOTtVewlLZWCQ_FKt7LeFpdFGUAsgxAlhWQTXaz7jGpFDI2tL0LSK_bBW3r-IIsXtYWL_-yeJNdk53K2tdmGz7WWlnyq3FI_O0oleeds_8YyznbCfXnq0tpLdaYTxd4wbbtcj6cTS_jnPwEOlblIA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYocOgFyqNiKUU5wIFDtHbsTeITaquuOADi0CJukcceo5XQZtnX72fseBehSnvpMclEiTwez-cZzzeMXXhVa6ewyqG0OleuGuQ1kl0ZxT06YTTEqrTH2-r-vn560g8p4DZLxypXa2JcqF1rQ4y8Hyo2i6oqy-J68pqHrlEhu5paaHxiO4RsRDjSdVc8rGMs5LsJX_CUnSR76gd28py8nOwba7mrP3ijSNpPPmbUTv5ZmaO7Ge7_749-YXsJaGY_uplxwLZwfMj2V00csmTTR0zHElzadKc5mOHrYrSkHTQNeRbprLN41cUMM7OYt4H70uH0mP0d_v7z6yZP_RRyS7BrngNww8ECVlIBATlpC47K11Ap5bVGZZ0mfy5LAbIcOB2owUB4CMlKrNDLr2x73I7xhGUKPBpROOE4KIOOYMYACCkIIzhHDT3WX41rYxPZeOh58dLEpHddN0ETTdBE02mix67Wb0w6oo0Nsj-DqtZygSI73minz02yuAaF4VKiNKq0yvkSIJTegfNSOSCY12OXpOgmmexsw8fOVnp-F35X8unmx9_Y59Cgvju1dsa259MFfme7djkfzabncbq-ASIv8rc
  priority: 102
  providerName: ProQuest
Title Multiresolution equivariant graph variational autoencoder
URI https://iopscience.iop.org/article/10.1088/2632-2153/acc0d8
https://www.proquest.com/docview/2789277662
https://doaj.org/article/e1a033e3a46c4df6bb2702bdf34db600
Volume 4
WOSCitedRecordID wos000957021100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: O3W
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: K7-
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: BENPR
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: PIMPY
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2632-2153
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513520
  issn: 2632-2153
  databaseCode: M2P
  dateStart: 20200301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VlgMXylOklGgPcOCwxLt21rY4UZQKBA0rxKOcVh4_pEooKWnSY397x14nqGpVIXGxdlfjtTUz9owf8w3AyyCUdsLLEhurS-HkuFSexpURLHhXGY0pKu3HZzmdquNj3W7B200szPw0T_1v6LEHCu5ZmC_EqVFEGC_JUvGRsZY5dQd2uCIzTsr8hf_cbLCQ4SbnguWjyZsqXjFFCbGfDAy1em1aTrbmcPe_evkA7mcXs3jXkz6ELT97BLvr9A1FHs2PQafgW1puZ-0r_J_VyTmtnYnZRQKyLtJbv1tYmNVyHlEvnV88ge-Hk2_vP5Q5k0JpyeFalojMMLToJRdILhy3NfMiKJRCBK29sE6TJedNhbwZOx1BwbAKGI8pvfSBP4Xt2Xzmn0EhMHhT1a5yDIXxjhyMMZKPUJmKMa9xAKM1UzubYcZjtovfXTruVqqLnOkiZ7qeMwN4valx2kNs3EJ7EOW0oYvg2OkDiaDLIuh8ZRjnnhvRWOFCgxiD7tAFLhySgzeAVyS1Lg_Ws1sa21_rwV_iGDlcS9k09d4__uY53Is56vuLa_uwvVys_Au4a8-XJ2eLIewcTKbt12HaDKDykyypPKrbWF5Mhkmpiar9eNT-ugTSdfSI
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMsFMiBHjhE68TeJD4gxKtq1WXVQ0G9GY89RiuhzTabLeJP8RuxnWQrhLS3HjgmcRIl8_rs8XwD8MqJSlpBZYqFkamw5SStyNuVFsyRzbTEWJX2dVrOZtX5uTzdgd9DLUzYVjn4xOiobW3CGvk4VGzmZVkU-dvlRRq6RoXs6tBCo1OLE_r100_ZVm-OP3r5HuT54aezD0dp31UgNR58tCki0wwNUskFejjDTc5IuApLIZyUJIyVPqrxIkNeTKwMBFmYOQwpOyrJcf_cG3BTBGaxsFUwP92s6Xis4PEM67Oh3n7HgQ099VGVj7UxzFZ_Rb_YJMDHtHm9_CcSxPB2uPe__Zh7cLcH0sm7TvPvww4tHsDe0KQi6X3WQ5CxxLihwcYSuljPL7W3u0WbRLruJB51a6KJXrd14Pa01DyCL9fyAY9hd1Ev6AkkAh3pLLeZZSg0WQ-jJuiRUKYzxkjiCMaDHJXpydRDT48fKib1q0oFyasgedVJfgSvN3csOyKRLWPfB9XYjAsU4PFE3XxXvUdRlGnGOXEtCiOsKxBDaSFax4VFD2NHcOAVS_UuabXlZfuDXl0NvlKqp9svv4TbR2efp2p6PDt5BndyDwG7HXr7sNs2a3oOt8xlO181L6KpJPDtulXwD2HWTzM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxsxDLcYTBMvsC9EgW33sD3s4dZck95dHmFbtWmo42EfvEVx4khIqC2l5e_HyaVFaBOatLe7yLmcbCd24vhngLdBtdorakqsnS6Vb4ZlSzyvrBKBfGU1pqy0X6fNeNyen-uzXOc05cJMZ3np_8CPHVBwx8J8Ia7tR4Txki2V7FvnhG_7Mx8ewVbEKYlq_V3-Xh-ysPHmVpHDk3_rfM8cJdR-NjI88h9Lc7I3o93__tOnsJNdzeK4I38GGzR5DrurMg5FntUvQKckXN52Zy0s6Gp5ccN7aGZ6kQCti_TWnRoWdrmYRvRLT_OX8HP0-cfHL2WuqFA6drwWJaKwAh1SIxWyKyfdQJAKLTZKBa1JOa_Zosu6QlkPvY7gYFgFjOFKaijIPdicTCe0D4XCQLYa-MoLVJY8OxpDZF-hspUQpLEH_RVjjctw47HqxaVJYe-2NZE7JnLHdNzpwft1j1kHtfEA7UmU1ZougmSnBhaDyWIwVFkhJUmraqd8qBFj8h36IJVHdvR68I4lZ_KkvX5gsKOVLtwRxwziQdPU9eDgHz_zBp6cfRqZ06_jb4ewHcvWd3fZjmBzMV_SK3jsbhYX1_PXSYdvATds8r4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiresolution+equivariant+graph+variational+autoencoder&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Hy%2C+Truong+Son&rft.au=Kondor%2C+Risi&rft.date=2023-03-01&rft.issn=2632-2153&rft.eissn=2632-2153&rft.volume=4&rft.issue=1&rft.spage=15031&rft_id=info:doi/10.1088%2F2632-2153%2Facc0d8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2632_2153_acc0d8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon