Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization

Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & operations research Ročník 35; číslo 6; s. 2093 - 2102
Hlavní autoři: Assavapokee, Tiravat, Realff, Matthew J., Ammons, Jane C., Hong, I-Hsuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.06.2008
Elsevier Science
Pergamon Press Inc
Témata:
ISSN:0305-0548, 1873-765X, 0305-0548
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distributions for uncertain parameter values. In these situations, decision makers are not able to search for the long-term decision setting with the best long-run average performance. Instead, decision makers are searching for the robust long-term decision setting that performs relatively well across all possible realizations of uncertainty without attempting to assign an assumed probability distribution to any ambiguous parameter. In this paper, we propose an iterative algorithm for solving min–max regret and min–max relative regret robust optimization problems for two-stage decision-making under uncertainty (ambiguity) where the structure of the first-stage problem is a mixed integer (binary) linear programming model and the structure of the second-stage problem is a linear programming model. The algorithm guarantees termination at an optimal robust solution, if one exists. A number of applications of the proposed algorithm are demonstrated. All results illustrate good performance of the proposed algorithm.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2006.10.013