Fast Decoding of Multipoint Codes from Algebraic Curves

Multipoint codes are a broad class of algebraic geometry codes derived from algebraic functions, which have multiple poles and/or zeros on an algebraic curve. Thus, they are more general than one-point codes, which are an important class of algebraic geometry codes in the sense that they can be deco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Transactions on Information Theory Jg. 60; H. 4; S. 2054 - 2064
Hauptverfasser: Sakata, Shojiro, Fujisawa, Masaya
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2014
Institute of Electrical and Electronics Engineers (IEEE)
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multipoint codes are a broad class of algebraic geometry codes derived from algebraic functions, which have multiple poles and/or zeros on an algebraic curve. Thus, they are more general than one-point codes, which are an important class of algebraic geometry codes in the sense that they can be decoded efficiently using the Berlekamp-Massey-Sakata algorithm. We present a fast method for decoding multipoint codes from a plane curve, particularly a Hermitian curve. Our method with some adaptation can be applied to decode multipoint codes from a general algebraic curve embedded in the N-dimensional affine space Fq N over a finite field F q , so that those algebraic geometry codes can be decoded efficiently if the dimension N of the affine space, including the defining curve is small.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2300473