Iterative Learning of Answer Set Programs from Context Dependent Examples

In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples must all be explained by a hypothesis together with a given background knowledge. In existing systems, the background knowle...

Full description

Saved in:
Bibliographic Details
Published in:Theory and practice of logic programming Vol. 16; no. 5-6; pp. 834 - 848
Main Authors: LAW, MARK, RUSSO, ALESSANDRA, BRODA, KRYSIA
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 01.09.2016
Subjects:
ISSN:1471-0684, 1475-3081
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples must all be explained by a hypothesis together with a given background knowledge. In existing systems, the background knowledge is the same for all examples; however, examples may be context-dependent. This means that some examples should be explained in the context of some information, whereas others should be explained in different contexts. In this paper, we capture this notion and present a context-dependent extension of the Learning from Ordered Answer Sets framework. In this extension, contexts can be used to further structure the background knowledge. We then propose a new iterative algorithm, ILASP2i, which exploits this feature to scale up the existing ILASP2 system to learning tasks with large numbers of examples. We demonstrate the gain in scalability by applying both algorithms to various learning tasks. Our results show that, compared to ILASP2, the newly proposed ILASP2i system can be two orders of magnitude faster and use two orders of magnitude less memory, whilst preserving the same average accuracy.
AbstractList In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples must all be explained by a hypothesis together with a given background knowledge. In existing systems, the background knowledge is the same for all examples; however, examples may be context-dependent. This means that some examples should be explained in the context of some information, whereas others should be explained in different contexts. In this paper, we capture this notion and present a context-dependent extension of the Learning from Ordered Answer Sets framework. In this extension, contexts can be used to further structure the background knowledge. We then propose a new iterative algorithm, ILASP2i, which exploits this feature to scale up the existing ILASP2 system to learning tasks with large numbers of examples. We demonstrate the gain in scalability by applying both algorithms to various learning tasks. Our results show that, compared to ILASP2, the newly proposed ILASP2i system can be two orders of magnitude faster and use two orders of magnitude less memory, whilst preserving the same average accuracy.
In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples must all be explained by a hypothesis together with a given background knowledge. In existing systems, the background knowledge is the same for all examples; however, examples may be context-dependent. This means that some examples should be explained in the context of some information, whereas others should be explained in different contexts. In this paper, we capture this notion and present a context-dependent extension of the Learning from Ordered Answer Sets framework. In this extension, contexts can be used to further structure the background knowledge. We then propose a new iterative algorithm, ILASP2i, which exploits this feature to scale up the existing ILASP2 system to learning tasks with large numbers of examples. We demonstrate the gain in scalability by applying both algorithms to various learning tasks. Our results show that, compared to ILASP2, the newly proposed ILASP2i system can be two orders of magnitude faster and use two orders of magnitude less memory, whilst preserving the same average accuracy.
Author LAW, MARK
RUSSO, ALESSANDRA
BRODA, KRYSIA
Author_xml – sequence: 1
  givenname: MARK
  surname: LAW
  fullname: LAW, MARK
  email: mark.law09@imperial.ac.uk
  organization: Department of Computing, Imperial College London, SW7 2AZ (e-mail: mark.law09@imperial.ac.uk, a.russo@imperial.ac.uk, k.broda@imperial.ac.uk)
– sequence: 2
  givenname: ALESSANDRA
  surname: RUSSO
  fullname: RUSSO, ALESSANDRA
  email: mark.law09@imperial.ac.uk
  organization: Department of Computing, Imperial College London, SW7 2AZ (e-mail: mark.law09@imperial.ac.uk, a.russo@imperial.ac.uk, k.broda@imperial.ac.uk)
– sequence: 3
  givenname: KRYSIA
  surname: BRODA
  fullname: BRODA, KRYSIA
  email: mark.law09@imperial.ac.uk
  organization: Department of Computing, Imperial College London, SW7 2AZ (e-mail: mark.law09@imperial.ac.uk, a.russo@imperial.ac.uk, k.broda@imperial.ac.uk)
BookMark eNp9kMlKBDEURYMoOH6Au4AbN6UZKoNLaaeGBgV1XaRSL01JVdImaYe_N227EEVXCck5j_vuLtr0wQNCh5ScUELV6T2tFSVS11QSQrigG2inPImKE003P--0Wv1vo92UngihkrN6B02nGaLJ_QvgGZjoez_HweFzn14h4nvI-C6GeTRjwi6GEU-Cz_CW8QUswHfgM758M-NigLSPtpwZEhx8nXvo8eryYXJTzW6vp5PzWWVLtlxxS6yulRQtI7wF6TRrO1DOCttKppmrjXXEOCKM7rSirK2J6pgyjHZOWMr30PF67iKG5yWk3Ix9sjAMxkNYpoZqIbg4U1IW9OgH-hSW0Zd0hWJan3EiWaHUmrIxpBTBNbbPpZKyaTT90FDSrCpuflVcTPrDXMR-NPH9X4d_OWZsY9_N4VuoP60PMVeNXQ
CitedBy_id crossref_primary_10_1007_s10994_021_06105_4
crossref_primary_10_1016_j_artint_2020_103438
crossref_primary_10_1016_j_artint_2018_03_005
crossref_primary_10_1017_S1471068418000248
crossref_primary_10_1007_s10994_019_05843_w
crossref_primary_10_1007_s10994_022_06146_3
crossref_primary_10_1016_j_artint_2022_103794
crossref_primary_10_1007_s10994_018_5708_2
crossref_primary_10_1007_s10994_024_06636_6
crossref_primary_10_1007_s10994_021_06013_7
crossref_primary_10_1007_s10994_021_06016_4
crossref_primary_10_1007_s10994_020_05934_z
crossref_primary_10_1017_S147106842100051X
crossref_primary_10_1007_s10994_023_06447_1
crossref_primary_10_1016_j_procs_2020_08_046
crossref_primary_10_1017_S1471068422000011
Cites_doi 10.1145/1055686.1055687
10.1007/s10994-013-5358-3
10.1007/978-3-540-39917-9_21
10.1007/s10994-013-5353-8
10.1007/BF03037227
10.1007/BF03037089
10.1007/s10994-015-5512-1
10.1017/S1471068415000198
10.1007/978-3-662-44923-3_3
10.1007/978-3-642-31951-8_12
10.1007/s10994-009-5113-y
10.1109/SASOW.2014.18
10.1016/j.jal.2008.10.007
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2016
Copyright_xml – notice: Copyright © Cambridge University Press 2016
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1017/S1471068416000351
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Computer and Information Systems Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate M. Law, A. Russo and K. Broda
Iterative learning of answer set programs from context-dependent examples
EISSN 1475-3081
EndPage 848
ExternalDocumentID 4214925121
10_1017_S1471068416000351
GroupedDBID -E.
.FH
09C
09E
0E1
0R~
123
29Q
3V.
4.4
5VS
74X
74Y
7~V
8FE
8FG
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAFUK
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAUKB
AAYOK
ABBXD
ABITZ
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBMC
ACCHT
ACGFS
ACIMK
ACNCT
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
BPHCQ
C0O
CAG
CBIIA
CCPQU
CCQAD
CCTKK
CFAFE
CHEAL
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EJD
GNUQQ
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IPYYG
IS6
I~P
J36
J38
J3A
J9A
JHPGK
JQKCU
K6V
K7-
KCGVB
KFECR
L98
LW7
M-V
M0N
NIKVX
O9-
OK1
OYBOY
P2P
P62
PQQKQ
PROAC
PYCCK
Q2X
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
WQ3
WXU
WXY
WYP
ZYDXJ
AAYXX
ABGDZ
ABVKB
ABVZP
ABXHF
ACAJB
ACDLN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c416t-3c0c84765b203be6f82bde7fc5cb6282f4acf0af05a8d8712b407d27a21df5c13
IEDL.DBID P5Z
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386589800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0684
IngestDate Thu Sep 04 16:47:13 EDT 2025
Fri Jul 25 10:11:15 EDT 2025
Sat Nov 29 04:58:36 EST 2025
Tue Nov 18 21:04:19 EST 2025
Wed Mar 13 05:56:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Iterative Learning
Answer Set Programming
Non-monotonic Inductive Logic Programming
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-3c0c84765b203be6f82bde7fc5cb6282f4acf0af05a8d8712b407d27a21df5c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1828893062
PQPubID 43613
PageCount 15
ParticipantIDs proquest_miscellaneous_1855359766
proquest_journals_1828893062
crossref_citationtrail_10_1017_S1471068416000351
crossref_primary_10_1017_S1471068416000351
cambridge_journals_10_1017_S1471068416000351
PublicationCentury 2000
PublicationDate 20160900
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Theory and practice of logic programming
PublicationTitleAlternate Theory and Practice of Logic Programming
PublicationYear 2016
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S1471068416000351_ref12
Law (S1471068416000351_ref5) 2014
Srinivasan (S1471068416000351_ref15) 2001
S1471068416000351_ref11
Athakravi (S1471068416000351_ref1) 2014
S1471068416000351_ref14
S1471068416000351_ref13
Poxrucker (S1471068416000351_ref10) 2014
S1471068416000351_ref2
S1471068416000351_ref3
S1471068416000351_ref4
S1471068416000351_ref6
S1471068416000351_ref7
S1471068416000351_ref8
S1471068416000351_ref9
References_xml – ident: S1471068416000351_ref13
  doi: 10.1145/1055686.1055687
– ident: S1471068416000351_ref9
  doi: 10.1007/s10994-013-5358-3
– ident: S1471068416000351_ref12
  doi: 10.1007/978-3-540-39917-9_21
– ident: S1471068416000351_ref3
  doi: 10.1007/s10994-013-5353-8
– volume-title: Logics in Artificial Intelligence (JELIA 2014)
  year: 2014
  ident: S1471068416000351_ref5
– ident: S1471068416000351_ref8
  doi: 10.1007/BF03037227
– volume-title: Machine Learning at the Computing Laboratory
  year: 2001
  ident: S1471068416000351_ref15
– ident: S1471068416000351_ref7
  doi: 10.1007/BF03037089
– ident: S1471068416000351_ref4
  doi: 10.1007/s10994-015-5512-1
– ident: S1471068416000351_ref6
  doi: 10.1017/S1471068415000198
– start-page: 31
  volume-title: Inductive Logic Programming
  year: 2014
  ident: S1471068416000351_ref1
  doi: 10.1007/978-3-662-44923-3_3
– ident: S1471068416000351_ref2
  doi: 10.1007/978-3-642-31951-8_12
– ident: S1471068416000351_ref14
  doi: 10.1007/s10994-009-5113-y
– start-page: 44
  volume-title: Proceedings of the Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops
  year: 2014
  ident: S1471068416000351_ref10
  doi: 10.1109/SASOW.2014.18
– ident: S1471068416000351_ref11
  doi: 10.1016/j.jal.2008.10.007
SSID ssj0016324
Score 2.3174164
Snippet In recent years, several frameworks and systems have been proposed that extend Inductive Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm....
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 834
SubjectTerms Algorithms
Gain
Iterative algorithms
Learning
Logic programming
Preserving
Programming
Regular Papers
Tasks
Title Iterative Learning of Answer Set Programs from Context Dependent Examples
URI https://www.cambridge.org/core/product/identifier/S1471068416000351/type/journal_article
https://www.proquest.com/docview/1828893062
https://www.proquest.com/docview/1855359766
Volume 16
WOSCitedRecordID wos000386589800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1471-0684
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1471-0684
  databaseCode: K7-
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1475-3081
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016324
  issn: 1471-0684
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RlgMXCgXElrJyJU4VFtk4_tgTastWVEWrVVVQxWUVj22EhLKlSUt_Pp7EiVoh7YWrY0dOxp7xeGbeA3hnhMusD8idLw0vpM-4CVhw60UwqEVZtPUV377o-dxcXk4X6cKtTmmVvU5sFbVbId2Rf4jnYBNta6byj1e_ObFGUXQ1UWhswBahJBB1w0J-H6IIBEXeVhdpyu4xRR_VJMhoaqS2ieqiafexFR7aqIcqurU7J9v_O-Nn8DSdONlht0SewyNf7cB2z-bA0uZ-AaenLcBy1H4sga7-YKvADqv6D3XzDVt0uVw1o5oU1uJa3TXsU6LRbdjsriSs4folfD2ZXRx_5ologWP8_oYLzDBaKSVtngnrVTC5dV4HlGhV9MlCUWLIypDJ0rjoYeU2uoEu12U-cUHiRLyCzWpV-dfAZKHsNFDiosfCTf3U5ii0QI2uCEGrEbwffvMybZd62aWa6eU_UhlB1ktiiQm0nLgzfq0bcjAMueoQO9Z13utld282g-BGsD88jtuOYill5Vc31EdKEZ0xpXbXv-INPIlnLNWlpe3BZnN949_CY7xtftbXY9g6ms0X52PYONN83K7ev9cE8M0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fTxQxEJ4gksiLKEg4Ra0Jvhga9tpu23swhgiEyx0XHtDwtm6nLTExe8gugv-Uf6Pt_grE5N548HW3bXa3029mdma-AdjR3CbGeaTW5ZqK1CVUexTUOO41Kp6Lur7i61TNZvr8fHS6BH-6WpiYVtlhYg3Udo7xH_lesIN10K2JZJ8uf9LYNSpGV7sWGo1YTNzvm-CylR_HB2F_3zN2dHj2-Zi2XQUoBuOjohwTDJAsU8MSbpz0mhnrlMcUjQwOiBc5-iT3SZprG9wJZoLPY5nK2dD6FIc8rPsIHguuVTxXE0X7qEWkPq-rmVTMJtKii6JGiup4MV4byiZ6d5fL4b5OvK8Saj13tPa_faFn8LS1qMl-cwSew5Ir1mGt61ZBWvDagPG4JpAO6E5aUtkLMvdkvyhv4jBXkdMmV60kseaG1LxdtxU5aNsEV-TwNo9cyuUL-PIgL7QJy8W8cFtAUiHNyMfETIfCjtzIMOSKo0IrvFdyALv9tmYtHJRZk0qnsn-kYABJt_MZtqTssTfIj0VTPvRTLhtGkkWDtztZufM0vaAM4F1_O8BKjBXlhZtfxzFpyoOzKeXLxUu8hSfHZyfTbDqeTV7BarAnZZOCtw3L1dW1ew0r-Kv6Xl69qc8KgW8PLXp_ASF4TC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Learning+of+Answer+Set+Programs+from+Context+Dependent+Examples&rft.jtitle=Theory+and+practice+of+logic+programming&rft.au=LAW%2C+MARK&rft.au=RUSSO%2C+ALESSANDRA&rft.au=BRODA%2C+KRYSIA&rft.date=2016-09-01&rft.issn=1471-0684&rft.eissn=1475-3081&rft.volume=16&rft.issue=5-6&rft.spage=834&rft.epage=848&rft_id=info:doi/10.1017%2FS1471068416000351&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S1471068416000351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0684&client=summon