Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms
This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the L...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Jg. 41; H. 6; S. 1715 - 1724 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.12.2011
|
| Schlagworte: | |
| ISSN: | 1083-4419, 1941-0492 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method. |
|---|---|
| AbstractList | This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method. This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method. |
| Author | Shengyuan Xu Deming Yuan Huanyu Zhao |
| Author_xml | – sequence: 1 surname: Deming Yuan fullname: Deming Yuan email: demingyuan@yahoo.com organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China – sequence: 2 surname: Shengyuan Xu fullname: Shengyuan Xu email: syxu02@yahoo.com.cn organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China – sequence: 3 surname: Huanyu Zhao fullname: Huanyu Zhao email: zhao223463@yahoo.com.cn organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21824853$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtO3DAUQC1Exav8AEgoy24y9bWdxF7S4SkxohJ0bTnJ9WCUxFPbQSpfT4YZWLDoypZ1zr3yOSS7gx-QkBOgMwCqfj4-LOa_ZowCzBiUlCuxQw5ACcipUGx3ulPJcyFA7ZPDGJ8ppYqqao_sM5BMyIIfEH3hYgquHhO22e_getPlF6PpsoexXgbTOhxStsD05NvM-pAtxi45s1y_3q-S692rSc4P2Ysz2dwPEYc4xuy8W_rg0lMfv5Nv1nQRj7fnEflzdfk4v8nv7q9v5-d3eSOgTDlIW1BTc4qsrUqrJGtqtI0UQpmqkbQuWFEaASBqqKgqJLc1KxvkTFqw1vAj8mMzdxX83xFj0r2LDXadGdCPUU-W4EJVDCb0bIuOdY-tXq1_Hf7pjygTwDZAE3yMAe0nAlSvy-v38npdXm_LT5L8IjUuvbdJwbju_-rpRnWI-LmrUFUpqpK_AbDikYE |
| CODEN | ITSCFI |
| CitedBy_id | crossref_primary_10_1109_TCYB_2015_2491368 crossref_primary_10_1109_TCNS_2019_2915015 crossref_primary_10_1016_j_jfranklin_2019_06_026 crossref_primary_10_1109_TSIPN_2021_3122302 crossref_primary_10_1109_TCYB_2016_2600753 crossref_primary_10_1049_iet_cta_2016_0795 crossref_primary_10_1109_MSP_2020_2976000 crossref_primary_10_1016_j_isatra_2024_03_024 crossref_primary_10_1109_TAC_2025_3535578 crossref_primary_10_1007_s40747_022_00770_1 crossref_primary_10_1109_TCSI_2013_2244322 crossref_primary_10_1109_TAC_2021_3056233 crossref_primary_10_1177_0142331216685390 crossref_primary_10_1016_j_neucom_2015_12_043 crossref_primary_10_1109_TCST_2016_2517574 crossref_primary_10_1002_rnc_6510 crossref_primary_10_1109_TAC_2019_2936355 crossref_primary_10_1109_TAC_2019_2934216 crossref_primary_10_1109_TAC_2021_3079192 crossref_primary_10_1109_TCYB_2020_3022240 crossref_primary_10_1016_j_jfranklin_2021_07_007 crossref_primary_10_1109_TAC_2017_2681200 crossref_primary_10_1080_00207179_2017_1387288 crossref_primary_10_1109_JSAC_2021_3118344 crossref_primary_10_1109_TAC_2014_2308612 crossref_primary_10_1016_j_jfranklin_2021_07_015 crossref_primary_10_1007_s11768_015_5100_8 crossref_primary_10_54644_jte_2025_1807 crossref_primary_10_1016_j_ifacol_2017_08_1597 crossref_primary_10_1002_rnc_5927 crossref_primary_10_1109_TII_2024_3363060 crossref_primary_10_3390_en10020235 crossref_primary_10_1109_TAC_2016_2593899 crossref_primary_10_1016_j_arcontrol_2019_05_006 crossref_primary_10_1016_j_sysconle_2014_06_008 crossref_primary_10_1109_TSMC_2013_2258909 crossref_primary_10_1016_j_jfranklin_2025_107530 crossref_primary_10_1016_j_neucom_2018_01_082 crossref_primary_10_1109_TAC_2017_2669321 crossref_primary_10_1109_TSMC_2021_3126343 crossref_primary_10_1109_TCYB_2017_2681119 crossref_primary_10_1109_TCYB_2021_3057426 crossref_primary_10_1631_FITEE_2200596 crossref_primary_10_1109_TAC_2018_2862471 crossref_primary_10_3390_math12213347 crossref_primary_10_1080_00207721_2013_822122 crossref_primary_10_1109_TCYB_2018_2856508 crossref_primary_10_1109_TCYB_2022_3179519 crossref_primary_10_1177_0142331213487545 crossref_primary_10_3390_en10050620 crossref_primary_10_1016_j_epsr_2024_110833 crossref_primary_10_1109_TCYB_2015_2464255 crossref_primary_10_1080_00207721_2024_2392829 crossref_primary_10_1016_j_automatica_2015_11_014 crossref_primary_10_1016_j_ins_2023_119116 crossref_primary_10_1109_TSMC_2019_2926696 crossref_primary_10_1016_j_jfranklin_2021_11_034 crossref_primary_10_1016_j_phycom_2021_101566 crossref_primary_10_1109_TCYB_2017_2703945 crossref_primary_10_1109_TCYB_2020_2989835 crossref_primary_10_1109_TAC_2021_3130082 crossref_primary_10_1109_TSMC_2016_2531649 crossref_primary_10_1016_j_jfranklin_2022_07_053 crossref_primary_10_1007_s11071_024_09952_7 crossref_primary_10_1080_03081079_2014_892253 crossref_primary_10_1109_TMC_2015_2400453 crossref_primary_10_1007_s40998_019_00240_4 crossref_primary_10_1109_TCYB_2021_3128051 crossref_primary_10_1109_TNNLS_2014_2336806 crossref_primary_10_1007_s10696_024_09589_z crossref_primary_10_1007_s12555_018_0191_x crossref_primary_10_1007_s11075_019_00746_2 crossref_primary_10_1109_ACCESS_2021_3110514 crossref_primary_10_1007_s11590_016_1071_z crossref_primary_10_1016_j_automatica_2018_11_056 crossref_primary_10_1109_TSP_2020_2999671 crossref_primary_10_1080_00207179_2025_2537855 crossref_primary_10_1080_00207179_2018_1481299 crossref_primary_10_1109_TAC_2016_2610945 crossref_primary_10_1002_rnc_3164 crossref_primary_10_1007_s10957_023_02173_9 crossref_primary_10_1002_rnc_2856 crossref_primary_10_1016_j_neucom_2022_08_035 crossref_primary_10_1016_j_neunet_2021_05_020 crossref_primary_10_1007_s10957_024_02595_z crossref_primary_10_1109_TCYB_2017_2755720 crossref_primary_10_1155_2014_202737 crossref_primary_10_1016_j_automatica_2016_01_055 crossref_primary_10_1109_TCYB_2019_2929394 crossref_primary_10_1109_TCYB_2018_2813431 crossref_primary_10_1016_j_jfranklin_2024_107270 crossref_primary_10_1109_TCYB_2016_2570808 crossref_primary_10_1109_TCYB_2025_3581999 crossref_primary_10_1109_TCYB_2017_2728644 crossref_primary_10_1155_2014_618641 crossref_primary_10_1016_j_neunet_2019_10_008 crossref_primary_10_1109_TMC_2023_3265646 crossref_primary_10_1109_TNSE_2021_3093536 crossref_primary_10_3390_e24091278 crossref_primary_10_1109_TCYB_2017_2726102 crossref_primary_10_1109_TCYB_2020_2990796 crossref_primary_10_1109_TCYB_2016_2613129 crossref_primary_10_1016_j_ins_2017_08_010 crossref_primary_10_1016_j_ins_2021_10_003 crossref_primary_10_1109_TCYB_2017_2766762 crossref_primary_10_1016_j_neucom_2016_02_064 crossref_primary_10_1016_j_ifacol_2016_10_418 crossref_primary_10_1137_15M1048896 crossref_primary_10_1109_ACCESS_2021_3082537 crossref_primary_10_1016_j_neucom_2021_06_097 crossref_primary_10_1049_iet_cta_2019_1169 crossref_primary_10_1016_j_ins_2017_09_038 crossref_primary_10_1016_j_ins_2016_06_050 crossref_primary_10_1109_TSMC_2021_3056871 crossref_primary_10_1155_2017_3610283 crossref_primary_10_1155_2013_825307 crossref_primary_10_1016_j_ins_2022_05_116 crossref_primary_10_1016_j_jfranklin_2023_03_042 crossref_primary_10_1109_TNSE_2025_3569300 crossref_primary_10_1109_TNSE_2023_3301900 crossref_primary_10_1109_TAC_2016_2616646 crossref_primary_10_1109_TSMC_2022_3144187 crossref_primary_10_1109_TAC_2024_3385546 crossref_primary_10_1109_TSMC_2014_2332306 crossref_primary_10_1109_TSMC_2019_2944857 crossref_primary_10_1016_j_jfranklin_2021_04_044 crossref_primary_10_1016_j_neucom_2015_12_017 crossref_primary_10_1109_JPROC_2020_3007395 crossref_primary_10_1109_TSP_2016_2626250 crossref_primary_10_1109_TSMC_2017_2757265 crossref_primary_10_1016_j_jfranklin_2018_05_004 crossref_primary_10_1109_TCYB_2015_2453167 crossref_primary_10_1109_TAC_2020_2981930 crossref_primary_10_1016_j_trb_2023_02_006 crossref_primary_10_1109_TNNLS_2015_2480419 crossref_primary_10_1109_TSMC_2018_2823901 |
| Cites_doi | 10.1109/TAC.2010.2041686 10.1007/s10957-009-9522-7 10.1016/j.automatica.2007.07.004 10.1109/TAC.2004.834113 10.1109/TSMCB.2009.2023509 10.1142/6570 10.1007/s10957-010-9737-7 10.1109/CDC.2008.4739339 10.1016/j.sysconle.2007.01.002 10.1109/TAC.2003.812781 10.1109/TAC.2008.2009515 10.1109/MCS.2007.338264 10.1109/TSMCB.2009.2024647 10.1109/TAC.2008.2009690 10.1016/j.automatica.2010.04.005 10.1103/PhysRevE.80.066121 10.1145/984622.984626 10.1109/TAC.2005.846556 10.1109/CDC.2008.4738860 10.1137/S0036144503423264 10.1109/TCSI.2009.2023937 10.1109/TIT.2006.874516 10.1016/j.sysconle.2004.02.022 10.1109/TSMCB.2009.2030495 10.1109/JSAC.2008.080506 10.1017/CBO9780511804441 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TSMCB.2011.2160394 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1941-0492 |
| EndPage | 1724 |
| ExternalDocumentID | 21824853 10_1109_TSMCB_2011_2160394 5976476 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5VS 6IK 85S 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PZZ RIA RIE RNS RXW TAE TAF VH1 VJK AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c416t-18f50ab30e2d76f982cbefc8449a7c80b5256a4114b1709583fb26ce328f1ffa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297342100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1083-4419 |
| IngestDate | Thu Jul 10 22:03:54 EDT 2025 Thu Apr 03 06:56:13 EDT 2025 Tue Nov 18 21:09:35 EST 2025 Sat Nov 29 03:17:35 EST 2025 Tue Aug 26 17:18:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c416t-18f50ab30e2d76f982cbefc8449a7c80b5256a4114b1709583fb26ce328f1ffa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21824853 |
| PQID | 1704349721 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TSMCB_2011_2160394 ieee_primary_5976476 proquest_miscellaneous_1704349721 crossref_citationtrail_10_1109_TSMCB_2011_2160394 pubmed_primary_21824853 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Dec. 2011-12-00 2011-Dec 20111201 |
| PublicationDateYYYYMMDD | 2011-12-01 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on systems, man and cybernetics. Part B, Cybernetics |
| PublicationTitleAbbrev | TSMCB |
| PublicationTitleAlternate | IEEE Trans Syst Man Cybern B Cybern |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref12 ref15 ref31 arrow (ref5) 1958 xiao (ref23) 2005 ref30 ref11 ref10 cao (ref22) 2010; 40 ref2 ref1 ref17 ref16 ref18 ram (ref29) 2010; 147 cao (ref19) 2010; 40 ref24 ref26 ref25 ref20 ref21 bertsekas (ref8) 2003 ref28 ref27 bertsekas (ref3) 1999 ref9 ref4 lu (ref7) 2010; 46 ref6 lu (ref14) 2010; 40 zhu (ref13) 2011 |
| References_xml | – ident: ref15 doi: 10.1109/TAC.2010.2041686 – ident: ref17 doi: 10.1007/s10957-009-9522-7 – year: 1958 ident: ref5 publication-title: Studies in Linear and Non-linear Programming – year: 2003 ident: ref8 publication-title: Convex Analysis and Optimization – ident: ref26 doi: 10.1016/j.automatica.2007.07.004 – ident: ref1 doi: 10.1109/TAC.2004.834113 – volume: 40 start-page: 350 year: 2010 ident: ref14 article-title: Globally exponential synchronization and synchronizability for general dynamical networks publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2023509 – ident: ref4 doi: 10.1142/6570 – volume: 147 start-page: 516 year: 2010 ident: ref29 article-title: Distributed stochastic subgradient projection algorithms for convex optimization publication-title: J Optim Theory Appl doi: 10.1007/s10957-010-9737-7 – ident: ref20 doi: 10.1109/CDC.2008.4739339 – ident: ref24 doi: 10.1016/j.sysconle.2007.01.002 – ident: ref25 doi: 10.1109/TAC.2003.812781 – ident: ref12 doi: 10.1109/TAC.2008.2009515 – ident: ref28 doi: 10.1109/MCS.2007.338264 – volume: 40 start-page: 362 year: 2010 ident: ref22 article-title: Distributed coordination of networked fractional-order systems publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2024647 – ident: ref11 doi: 10.1109/TAC.2008.2009690 – volume: 46 start-page: 1215 year: 2010 ident: ref7 article-title: A unified synchronization criterion for impulsive dynamical networks publication-title: Automatica doi: 10.1016/j.automatica.2010.04.005 – ident: ref18 doi: 10.1103/PhysRevE.80.066121 – ident: ref31 doi: 10.1145/984622.984626 – ident: ref2 doi: 10.1109/TAC.2005.846556 – ident: ref21 doi: 10.1109/CDC.2008.4738860 – ident: ref30 doi: 10.1137/S0036144503423264 – ident: ref10 doi: 10.1109/TCSI.2009.2023937 – ident: ref27 doi: 10.1109/TIT.2006.874516 – year: 1999 ident: ref3 publication-title: Nonlinear Programming – ident: ref9 doi: 10.1016/j.sysconle.2004.02.022 – year: 2011 ident: ref13 article-title: On distributed convex optimization under inequality and equality constraints via primal-dual subgradient methods publication-title: IEEE Trans Autom Control – volume: 40 start-page: 819 year: 2010 ident: ref19 article-title: Optimal linear-consensus algorithms: An LQR perspective publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2009.2030495 – ident: ref6 doi: 10.1109/JSAC.2008.080506 – ident: ref16 doi: 10.1017/CBO9780511804441 – start-page: 63 year: 2005 ident: ref23 article-title: A scheme for robust distributed sensor fusion based on average consensus publication-title: Proc 4th Int Symp Inf Process Sensor Netw |
| SSID | ssj0009097 |
| Score | 2.3839836 |
| Snippet | This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1715 |
| SubjectTerms | Algorithm design and analysis Approximation algorithms Average consensus Convergence Convex functions convex optimization distributed optimization Lagrangian functions Optimization subgradient method Upper bound |
| Title | Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms |
| URI | https://ieeexplore.ieee.org/document/5976476 https://www.ncbi.nlm.nih.gov/pubmed/21824853 https://www.proquest.com/docview/1704349721 |
| Volume | 41 |
| WOSCitedRecordID | wos000297342100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0492 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0009097 issn: 1083-4419 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BxQEOQFnLJiNxAEEgi-s4R1ZxYZEAqbfIcWyoVFrUpHw_M05aQAIkbjnYVpI3tp-XeQ9gjw7bVJRrZG6Ke5xygGU7556MbI7zCY6JSe7MJuLbW9npJPdTcDTJhTHGuMtn5pge3Vl-PtAj2io7QfIreCymYTqORZWr9Smw61dGKkgpPJzik3GCjJ-cPD7cnJ9Vap0huSon3EkAS1Lzir7NR85g5Xeu6eacq4X_ve0izNfckp1WwdCEKdNfgrkvioNL0Kz7csH2a8Hpg2VIL0g9l4yvTM7uSX6i512MsCUcVZ6H7k5YyW6c1TRDjstc0q6inCx2hyPOa53Kyd67ipEBKLlnFOy09zwYdsuX12IFnq4uH8-vvdp4wdPIz0ovkLbtqyzyTZjHwiYy1JmxWnKeqFhLP2sjUVIcl1JZECNHQ2CzUGgThdIG1qpoFRr9Qd-sAzMmUNpKbXyecSGssioO20oJiat4I7IWBOPfn-palZzMMXqpW534SerQSwm9tEavBYeTOm-VJsefpZcJm0nJGpYW7I5RTrFH0TGJ6pvBqEjxk3jESdWoBWsV_JPK46jZ-LnRTZh1e87uussWNMrhyGzDjH4vu8VwB8O2I3dc2H4ArNjnFw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swGP0EbBLsgY3Lto5teBIPTJCRi5s4j0BXgUY7JIrEm-U4NlQq7dSk_P59n-N2mwSTeIsU20p8fDm-fOcA7NFhm0pKjcxN8YBTDLBolzwQiS1xPsExMS-d2UTW74ubm_xyCQ4XsTDGGHf5zHyjR3eWX070jLbKjpD8pjxLl-EFOWf5aK0_ErthY6WCpCLA1_k8RCbMjwZXvdOTRq8zJl_lnDsRYEF6Xsk_M5KzWHmabbpZp_v6ed_7BtY9u2THTXPYgCUz3oRXf2kObsKG780V2_eS01-3QHZIP5esr0zJLkmAYhR0ZlgSjiu3U3crrGY9ZzbNkOUyF7arKCqL_cQx594Hc7KHoWJkAUr-GRU7Ht1OpsP67r7ahuvu98HpWeCtFwKNDK0OImHboSqS0MRlltpcxLowVgvOc5VpERZtpEqK42KqiDJkaQhtEafaJLGwkbUqeQsr48nYvAdmTKS0FdqEvOBpapVVWdxWKhW4jjdp0YJoXv1Se11ysscYSbc-CXPp0JOEnvToteBgkedXo8rx39RbhM0ipYelBV_mKEvsU3RQosZmMqsk_hJPOOkateBdA_8i87zVfHi80F1YPRv0LuTFef_HDqy5HWh3-eUjrNTTmfkEL_VDPaymn13j_Q1prOl4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Primal-Dual+Subgradient+Method+for+Multiagent+Optimization+via+Consensus+Algorithms&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.date=2011-12-01&rft.issn=1083-4419&rft.volume=41&rft.issue=6&rft.spage=1715&rft_id=info:doi/10.1109%2FTSMCB.2011.2160394&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon |