Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms

This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part B, Cybernetics Jg. 41; H. 6; S. 1715 - 1724
Hauptverfasser: Deming Yuan, Shengyuan Xu, Huanyu Zhao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.12.2011
Schlagworte:
ISSN:1083-4419, 1941-0492
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.
AbstractList This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.
This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and a convex state constraint set over a network. Through characterizing the primal and dual optimal solutions as the saddle points of the Lagrangian function associated with the problem, we propose a distributed algorithm, named the distributed primal-dual subgradient method, to provide approximate saddle points of the Lagrangian function, based on the distributed average consensus algorithms. Under Slater's condition, we obtain bounds on the convergence properties of the proposed method for a constant step size. Simulation examples are provided to demonstrate the effectiveness of the proposed method.
Author Shengyuan Xu
Deming Yuan
Huanyu Zhao
Author_xml – sequence: 1
  surname: Deming Yuan
  fullname: Deming Yuan
  email: demingyuan@yahoo.com
  organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China
– sequence: 2
  surname: Shengyuan Xu
  fullname: Shengyuan Xu
  email: syxu02@yahoo.com.cn
  organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China
– sequence: 3
  surname: Huanyu Zhao
  fullname: Huanyu Zhao
  email: zhao223463@yahoo.com.cn
  organization: Sch. of Autom., Nanjing Univ. of Sci. & Technol., Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21824853$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtO3DAUQC1Exav8AEgoy24y9bWdxF7S4SkxohJ0bTnJ9WCUxFPbQSpfT4YZWLDoypZ1zr3yOSS7gx-QkBOgMwCqfj4-LOa_ZowCzBiUlCuxQw5ACcipUGx3ulPJcyFA7ZPDGJ8ppYqqao_sM5BMyIIfEH3hYgquHhO22e_getPlF6PpsoexXgbTOhxStsD05NvM-pAtxi45s1y_3q-S692rSc4P2Ysz2dwPEYc4xuy8W_rg0lMfv5Nv1nQRj7fnEflzdfk4v8nv7q9v5-d3eSOgTDlIW1BTc4qsrUqrJGtqtI0UQpmqkbQuWFEaASBqqKgqJLc1KxvkTFqw1vAj8mMzdxX83xFj0r2LDXadGdCPUU-W4EJVDCb0bIuOdY-tXq1_Hf7pjygTwDZAE3yMAe0nAlSvy-v38npdXm_LT5L8IjUuvbdJwbju_-rpRnWI-LmrUFUpqpK_AbDikYE
CODEN ITSCFI
CitedBy_id crossref_primary_10_1109_TCYB_2015_2491368
crossref_primary_10_1109_TCNS_2019_2915015
crossref_primary_10_1016_j_jfranklin_2019_06_026
crossref_primary_10_1109_TSIPN_2021_3122302
crossref_primary_10_1109_TCYB_2016_2600753
crossref_primary_10_1049_iet_cta_2016_0795
crossref_primary_10_1109_MSP_2020_2976000
crossref_primary_10_1016_j_isatra_2024_03_024
crossref_primary_10_1109_TAC_2025_3535578
crossref_primary_10_1007_s40747_022_00770_1
crossref_primary_10_1109_TCSI_2013_2244322
crossref_primary_10_1109_TAC_2021_3056233
crossref_primary_10_1177_0142331216685390
crossref_primary_10_1016_j_neucom_2015_12_043
crossref_primary_10_1109_TCST_2016_2517574
crossref_primary_10_1002_rnc_6510
crossref_primary_10_1109_TAC_2019_2936355
crossref_primary_10_1109_TAC_2019_2934216
crossref_primary_10_1109_TAC_2021_3079192
crossref_primary_10_1109_TCYB_2020_3022240
crossref_primary_10_1016_j_jfranklin_2021_07_007
crossref_primary_10_1109_TAC_2017_2681200
crossref_primary_10_1080_00207179_2017_1387288
crossref_primary_10_1109_JSAC_2021_3118344
crossref_primary_10_1109_TAC_2014_2308612
crossref_primary_10_1016_j_jfranklin_2021_07_015
crossref_primary_10_1007_s11768_015_5100_8
crossref_primary_10_54644_jte_2025_1807
crossref_primary_10_1016_j_ifacol_2017_08_1597
crossref_primary_10_1002_rnc_5927
crossref_primary_10_1109_TII_2024_3363060
crossref_primary_10_3390_en10020235
crossref_primary_10_1109_TAC_2016_2593899
crossref_primary_10_1016_j_arcontrol_2019_05_006
crossref_primary_10_1016_j_sysconle_2014_06_008
crossref_primary_10_1109_TSMC_2013_2258909
crossref_primary_10_1016_j_jfranklin_2025_107530
crossref_primary_10_1016_j_neucom_2018_01_082
crossref_primary_10_1109_TAC_2017_2669321
crossref_primary_10_1109_TSMC_2021_3126343
crossref_primary_10_1109_TCYB_2017_2681119
crossref_primary_10_1109_TCYB_2021_3057426
crossref_primary_10_1631_FITEE_2200596
crossref_primary_10_1109_TAC_2018_2862471
crossref_primary_10_3390_math12213347
crossref_primary_10_1080_00207721_2013_822122
crossref_primary_10_1109_TCYB_2018_2856508
crossref_primary_10_1109_TCYB_2022_3179519
crossref_primary_10_1177_0142331213487545
crossref_primary_10_3390_en10050620
crossref_primary_10_1016_j_epsr_2024_110833
crossref_primary_10_1109_TCYB_2015_2464255
crossref_primary_10_1080_00207721_2024_2392829
crossref_primary_10_1016_j_automatica_2015_11_014
crossref_primary_10_1016_j_ins_2023_119116
crossref_primary_10_1109_TSMC_2019_2926696
crossref_primary_10_1016_j_jfranklin_2021_11_034
crossref_primary_10_1016_j_phycom_2021_101566
crossref_primary_10_1109_TCYB_2017_2703945
crossref_primary_10_1109_TCYB_2020_2989835
crossref_primary_10_1109_TAC_2021_3130082
crossref_primary_10_1109_TSMC_2016_2531649
crossref_primary_10_1016_j_jfranklin_2022_07_053
crossref_primary_10_1007_s11071_024_09952_7
crossref_primary_10_1080_03081079_2014_892253
crossref_primary_10_1109_TMC_2015_2400453
crossref_primary_10_1007_s40998_019_00240_4
crossref_primary_10_1109_TCYB_2021_3128051
crossref_primary_10_1109_TNNLS_2014_2336806
crossref_primary_10_1007_s10696_024_09589_z
crossref_primary_10_1007_s12555_018_0191_x
crossref_primary_10_1007_s11075_019_00746_2
crossref_primary_10_1109_ACCESS_2021_3110514
crossref_primary_10_1007_s11590_016_1071_z
crossref_primary_10_1016_j_automatica_2018_11_056
crossref_primary_10_1109_TSP_2020_2999671
crossref_primary_10_1080_00207179_2025_2537855
crossref_primary_10_1080_00207179_2018_1481299
crossref_primary_10_1109_TAC_2016_2610945
crossref_primary_10_1002_rnc_3164
crossref_primary_10_1007_s10957_023_02173_9
crossref_primary_10_1002_rnc_2856
crossref_primary_10_1016_j_neucom_2022_08_035
crossref_primary_10_1016_j_neunet_2021_05_020
crossref_primary_10_1007_s10957_024_02595_z
crossref_primary_10_1109_TCYB_2017_2755720
crossref_primary_10_1155_2014_202737
crossref_primary_10_1016_j_automatica_2016_01_055
crossref_primary_10_1109_TCYB_2019_2929394
crossref_primary_10_1109_TCYB_2018_2813431
crossref_primary_10_1016_j_jfranklin_2024_107270
crossref_primary_10_1109_TCYB_2016_2570808
crossref_primary_10_1109_TCYB_2025_3581999
crossref_primary_10_1109_TCYB_2017_2728644
crossref_primary_10_1155_2014_618641
crossref_primary_10_1016_j_neunet_2019_10_008
crossref_primary_10_1109_TMC_2023_3265646
crossref_primary_10_1109_TNSE_2021_3093536
crossref_primary_10_3390_e24091278
crossref_primary_10_1109_TCYB_2017_2726102
crossref_primary_10_1109_TCYB_2020_2990796
crossref_primary_10_1109_TCYB_2016_2613129
crossref_primary_10_1016_j_ins_2017_08_010
crossref_primary_10_1016_j_ins_2021_10_003
crossref_primary_10_1109_TCYB_2017_2766762
crossref_primary_10_1016_j_neucom_2016_02_064
crossref_primary_10_1016_j_ifacol_2016_10_418
crossref_primary_10_1137_15M1048896
crossref_primary_10_1109_ACCESS_2021_3082537
crossref_primary_10_1016_j_neucom_2021_06_097
crossref_primary_10_1049_iet_cta_2019_1169
crossref_primary_10_1016_j_ins_2017_09_038
crossref_primary_10_1016_j_ins_2016_06_050
crossref_primary_10_1109_TSMC_2021_3056871
crossref_primary_10_1155_2017_3610283
crossref_primary_10_1155_2013_825307
crossref_primary_10_1016_j_ins_2022_05_116
crossref_primary_10_1016_j_jfranklin_2023_03_042
crossref_primary_10_1109_TNSE_2025_3569300
crossref_primary_10_1109_TNSE_2023_3301900
crossref_primary_10_1109_TAC_2016_2616646
crossref_primary_10_1109_TSMC_2022_3144187
crossref_primary_10_1109_TAC_2024_3385546
crossref_primary_10_1109_TSMC_2014_2332306
crossref_primary_10_1109_TSMC_2019_2944857
crossref_primary_10_1016_j_jfranklin_2021_04_044
crossref_primary_10_1016_j_neucom_2015_12_017
crossref_primary_10_1109_JPROC_2020_3007395
crossref_primary_10_1109_TSP_2016_2626250
crossref_primary_10_1109_TSMC_2017_2757265
crossref_primary_10_1016_j_jfranklin_2018_05_004
crossref_primary_10_1109_TCYB_2015_2453167
crossref_primary_10_1109_TAC_2020_2981930
crossref_primary_10_1016_j_trb_2023_02_006
crossref_primary_10_1109_TNNLS_2015_2480419
crossref_primary_10_1109_TSMC_2018_2823901
Cites_doi 10.1109/TAC.2010.2041686
10.1007/s10957-009-9522-7
10.1016/j.automatica.2007.07.004
10.1109/TAC.2004.834113
10.1109/TSMCB.2009.2023509
10.1142/6570
10.1007/s10957-010-9737-7
10.1109/CDC.2008.4739339
10.1016/j.sysconle.2007.01.002
10.1109/TAC.2003.812781
10.1109/TAC.2008.2009515
10.1109/MCS.2007.338264
10.1109/TSMCB.2009.2024647
10.1109/TAC.2008.2009690
10.1016/j.automatica.2010.04.005
10.1103/PhysRevE.80.066121
10.1145/984622.984626
10.1109/TAC.2005.846556
10.1109/CDC.2008.4738860
10.1137/S0036144503423264
10.1109/TCSI.2009.2023937
10.1109/TIT.2006.874516
10.1016/j.sysconle.2004.02.022
10.1109/TSMCB.2009.2030495
10.1109/JSAC.2008.080506
10.1017/CBO9780511804441
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TSMCB.2011.2160394
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1941-0492
EndPage 1724
ExternalDocumentID 21824853
10_1109_TSMCB_2011_2160394
5976476
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VH1
VJK
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c416t-18f50ab30e2d76f982cbefc8449a7c80b5256a4114b1709583fb26ce328f1ffa3
IEDL.DBID RIE
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000297342100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1083-4419
IngestDate Thu Jul 10 22:03:54 EDT 2025
Thu Apr 03 06:56:13 EDT 2025
Tue Nov 18 21:09:35 EST 2025
Sat Nov 29 03:17:35 EST 2025
Tue Aug 26 17:18:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-18f50ab30e2d76f982cbefc8449a7c80b5256a4114b1709583fb26ce328f1ffa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21824853
PQID 1704349721
PQPubID 23479
PageCount 10
ParticipantIDs crossref_primary_10_1109_TSMCB_2011_2160394
ieee_primary_5976476
proquest_miscellaneous_1704349721
crossref_citationtrail_10_1109_TSMCB_2011_2160394
pubmed_primary_21824853
PublicationCentury 2000
PublicationDate 2011-Dec.
2011-12-00
2011-Dec
20111201
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on systems, man and cybernetics. Part B, Cybernetics
PublicationTitleAbbrev TSMCB
PublicationTitleAlternate IEEE Trans Syst Man Cybern B Cybern
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref15
ref31
arrow (ref5) 1958
xiao (ref23) 2005
ref30
ref11
ref10
cao (ref22) 2010; 40
ref2
ref1
ref17
ref16
ref18
ram (ref29) 2010; 147
cao (ref19) 2010; 40
ref24
ref26
ref25
ref20
ref21
bertsekas (ref8) 2003
ref28
ref27
bertsekas (ref3) 1999
ref9
ref4
lu (ref7) 2010; 46
ref6
lu (ref14) 2010; 40
zhu (ref13) 2011
References_xml – ident: ref15
  doi: 10.1109/TAC.2010.2041686
– ident: ref17
  doi: 10.1007/s10957-009-9522-7
– year: 1958
  ident: ref5
  publication-title: Studies in Linear and Non-linear Programming
– year: 2003
  ident: ref8
  publication-title: Convex Analysis and Optimization
– ident: ref26
  doi: 10.1016/j.automatica.2007.07.004
– ident: ref1
  doi: 10.1109/TAC.2004.834113
– volume: 40
  start-page: 350
  year: 2010
  ident: ref14
  article-title: Globally exponential synchronization and synchronizability for general dynamical networks
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2023509
– ident: ref4
  doi: 10.1142/6570
– volume: 147
  start-page: 516
  year: 2010
  ident: ref29
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-010-9737-7
– ident: ref20
  doi: 10.1109/CDC.2008.4739339
– ident: ref24
  doi: 10.1016/j.sysconle.2007.01.002
– ident: ref25
  doi: 10.1109/TAC.2003.812781
– ident: ref12
  doi: 10.1109/TAC.2008.2009515
– ident: ref28
  doi: 10.1109/MCS.2007.338264
– volume: 40
  start-page: 362
  year: 2010
  ident: ref22
  article-title: Distributed coordination of networked fractional-order systems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2024647
– ident: ref11
  doi: 10.1109/TAC.2008.2009690
– volume: 46
  start-page: 1215
  year: 2010
  ident: ref7
  article-title: A unified synchronization criterion for impulsive dynamical networks
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.04.005
– ident: ref18
  doi: 10.1103/PhysRevE.80.066121
– ident: ref31
  doi: 10.1145/984622.984626
– ident: ref2
  doi: 10.1109/TAC.2005.846556
– ident: ref21
  doi: 10.1109/CDC.2008.4738860
– ident: ref30
  doi: 10.1137/S0036144503423264
– ident: ref10
  doi: 10.1109/TCSI.2009.2023937
– ident: ref27
  doi: 10.1109/TIT.2006.874516
– year: 1999
  ident: ref3
  publication-title: Nonlinear Programming
– ident: ref9
  doi: 10.1016/j.sysconle.2004.02.022
– year: 2011
  ident: ref13
  article-title: On distributed convex optimization under inequality and equality constraints via primal-dual subgradient methods
  publication-title: IEEE Trans Autom Control
– volume: 40
  start-page: 819
  year: 2010
  ident: ref19
  article-title: Optimal linear-consensus algorithms: An LQR perspective
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2009.2030495
– ident: ref6
  doi: 10.1109/JSAC.2008.080506
– ident: ref16
  doi: 10.1017/CBO9780511804441
– start-page: 63
  year: 2005
  ident: ref23
  article-title: A scheme for robust distributed sensor fusion based on average consensus
  publication-title: Proc 4th Int Symp Inf Process Sensor Netw
SSID ssj0009097
Score 2.3839836
Snippet This paper studies the problem of optimizing the sum of multiple agents' local convex objective functions, subject to global convex inequality constraints and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1715
SubjectTerms Algorithm design and analysis
Approximation algorithms
Average consensus
Convergence
Convex functions
convex optimization
distributed optimization
Lagrangian functions
Optimization
subgradient method
Upper bound
Title Distributed Primal-Dual Subgradient Method for Multiagent Optimization via Consensus Algorithms
URI https://ieeexplore.ieee.org/document/5976476
https://www.ncbi.nlm.nih.gov/pubmed/21824853
https://www.proquest.com/docview/1704349721
Volume 41
WOSCitedRecordID wos000297342100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0492
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0009097
  issn: 1083-4419
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BxQEOQFnLJiNxAEEgi-s4R1ZxYZEAqbfIcWyoVFrUpHw_M05aQAIkbjnYVpI3tp-XeQ9gjw7bVJRrZG6Ke5xygGU7556MbI7zCY6JSe7MJuLbW9npJPdTcDTJhTHGuMtn5pge3Vl-PtAj2io7QfIreCymYTqORZWr9Smw61dGKkgpPJzik3GCjJ-cPD7cnJ9Vap0huSon3EkAS1Lzir7NR85g5Xeu6eacq4X_ve0izNfckp1WwdCEKdNfgrkvioNL0Kz7csH2a8Hpg2VIL0g9l4yvTM7uSX6i512MsCUcVZ6H7k5YyW6c1TRDjstc0q6inCx2hyPOa53Kyd67ipEBKLlnFOy09zwYdsuX12IFnq4uH8-vvdp4wdPIz0ovkLbtqyzyTZjHwiYy1JmxWnKeqFhLP2sjUVIcl1JZECNHQ2CzUGgThdIG1qpoFRr9Qd-sAzMmUNpKbXyecSGssioO20oJiat4I7IWBOPfn-palZzMMXqpW534SerQSwm9tEavBYeTOm-VJsefpZcJm0nJGpYW7I5RTrFH0TGJ6pvBqEjxk3jESdWoBWsV_JPK46jZ-LnRTZh1e87uussWNMrhyGzDjH4vu8VwB8O2I3dc2H4ArNjnFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swGP0EbBLsgY3Lto5teBIPTJCRi5s4j0BXgUY7JIrEm-U4NlQq7dSk_P59n-N2mwSTeIsU20p8fDm-fOcA7NFhm0pKjcxN8YBTDLBolzwQiS1xPsExMS-d2UTW74ubm_xyCQ4XsTDGGHf5zHyjR3eWX070jLbKjpD8pjxLl-EFOWf5aK0_ErthY6WCpCLA1_k8RCbMjwZXvdOTRq8zJl_lnDsRYEF6Xsk_M5KzWHmabbpZp_v6ed_7BtY9u2THTXPYgCUz3oRXf2kObsKG780V2_eS01-3QHZIP5esr0zJLkmAYhR0ZlgSjiu3U3crrGY9ZzbNkOUyF7arKCqL_cQx594Hc7KHoWJkAUr-GRU7Ht1OpsP67r7ahuvu98HpWeCtFwKNDK0OImHboSqS0MRlltpcxLowVgvOc5VpERZtpEqK42KqiDJkaQhtEafaJLGwkbUqeQsr48nYvAdmTKS0FdqEvOBpapVVWdxWKhW4jjdp0YJoXv1Se11ysscYSbc-CXPp0JOEnvToteBgkedXo8rx39RbhM0ipYelBV_mKEvsU3RQosZmMqsk_hJPOOkateBdA_8i87zVfHi80F1YPRv0LuTFef_HDqy5HWh3-eUjrNTTmfkEL_VDPaymn13j_Q1prOl4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Primal-Dual+Subgradient+Method+for+Multiagent+Optimization+via+Consensus+Algorithms&rft.jtitle=IEEE+transactions+on+systems%2C+man+and+cybernetics.+Part+B%2C+Cybernetics&rft.date=2011-12-01&rft.issn=1083-4419&rft.volume=41&rft.issue=6&rft.spage=1715&rft_id=info:doi/10.1109%2FTSMCB.2011.2160394&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4419&client=summon