Solution‐Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 32; číslo 40; s. e2004072 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.10.2020
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off.
A thermally activated delayed fluorescence material featuring a multiple resonance effect of boron, nitrogen, and oxygen atoms (OAB‐ABP‐1) is synthesized by one‐shot double borylation. A solution‐processed organic light‐emitting diode (OLED) device using OAB‐ABP‐1 exhibits pure green electroluminescence with a small full‐width at half‐maximum, and a high external quantum efficiency with minimum efficiency roll‐off. |
|---|---|
| AbstractList | Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off.Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off. Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. A thermally activated delayed fluorescence material featuring a multiple resonance effect of boron, nitrogen, and oxygen atoms (OAB‐ABP‐1) is synthesized by one‐shot double borylation. A solution‐processed organic light‐emitting diode (OLED) device using OAB‐ABP‐1 exhibits pure green electroluminescence with a small full‐width at half‐maximum, and a high external quantum efficiency with minimum efficiency roll‐off. Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1, and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution‐processing, which is an economical approach toward the mass production of OLED displays. Here, a solution‐processable MR‐TADF material (OAB‐ABP‐1), with an extended π‐skeleton and bulky substituents, is designed. OAB‐ABP‐1 is synthesized from commercially available starting materials via a four‐step process involving one‐shot double borylation. OAB‐ABP‐1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S 1 and T 1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB‐ABP‐1 are synthesized for use as interlayer and emissive layer materials. A solution‐processed OLED device is fabricated using OAB‐ABP‐1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full‐width at half‐maximum and a high external quantum efficiency with minimum efficiency roll‐off. |
| Author | Fukushima, Daisuke Hatakeyama, Takuji Yoshioka, Mayu Yoshiura, Kazuki Oda, Susumu Ikeda, Naoya Matsumoto, Ryuji Yasuda, Nobuhiro |
| Author_xml | – sequence: 1 givenname: Naoya surname: Ikeda fullname: Ikeda, Naoya organization: Kwansei Gakuin University – sequence: 2 givenname: Susumu orcidid: 0000-0003-1088-1932 surname: Oda fullname: Oda, Susumu organization: Kwansei Gakuin University – sequence: 3 givenname: Ryuji surname: Matsumoto fullname: Matsumoto, Ryuji organization: Sumitomo Chemical Co., Ltd – sequence: 4 givenname: Mayu surname: Yoshioka fullname: Yoshioka, Mayu organization: Sumitomo Chemical Co., Ltd – sequence: 5 givenname: Daisuke surname: Fukushima fullname: Fukushima, Daisuke organization: Sumitomo Chemical Co., Ltd – sequence: 6 givenname: Kazuki surname: Yoshiura fullname: Yoshiura, Kazuki organization: Kwansei Gakuin University – sequence: 7 givenname: Nobuhiro surname: Yasuda fullname: Yasuda, Nobuhiro organization: Japan Synchrotron Radiation Research Institute (JASRI) – sequence: 8 givenname: Takuji orcidid: 0000-0002-7483-9525 surname: Hatakeyama fullname: Hatakeyama, Takuji email: hatake@kwansei.ac.jp organization: Kwansei Gakuin University |
| BookMark | eNqFkT1vFDEQhi0UJC6BltoSDc0e_lqfXR75AikRUQj1yvbNKo6868P2Bm3HT-A38kvw5VCQIqFUU8zzzIzmPUQHYxwBobeULCkh7IPZDGbJCCNEkBV7gRa0ZbQRRLcHaEE0bxsthXqFDnO-I4RoSeQCzV9jmIqP4--fv65SdJCzsQHw1ZQAnyeAEd_cQhpMCDNeu-LvTYENPoFg5lrPwhQTZAejA3w6-FIg4Y8m11YccbkFfDmF4rd14jXkOJoHru_BldfoZW9Chjd_6xH6dnZ6c_ypufhy_vl4fdE4QSVrqCVss5JSWCeVs8ySXgrJ-UrRXgshrdsYyxWsLNG9Y7wllmvXamfrEqd6foTe7-duU_w-QS7d4OvBIZgR4pQ7JrjSmirGK_ruCXoXpzTW6yollKKMC1Upsadcijkn6Dvni9n9sCTjQ0dJt8uj2-XRPeZRteUTbZv8YNL8f0HvhR8-wPwM3a1PLtf_3D9MfqHo |
| CitedBy_id | crossref_primary_10_1002_ange_202204652 crossref_primary_10_1016_j_cej_2025_164225 crossref_primary_10_1039_D5SC03560K crossref_primary_10_1002_anie_202105032 crossref_primary_10_1002_adma_202201442 crossref_primary_10_1246_cl_200915 crossref_primary_10_1016_j_cej_2024_155350 crossref_primary_10_1002_adma_202105080 crossref_primary_10_1002_ange_202104361 crossref_primary_10_1002_ange_202217045 crossref_primary_10_1002_adom_202403556 crossref_primary_10_1002_anie_202418770 crossref_primary_10_1002_ange_202412720 crossref_primary_10_1002_adom_202301084 crossref_primary_10_1016_j_dyepig_2023_111371 crossref_primary_10_1002_ange_202113075 crossref_primary_10_1002_anie_202201886 crossref_primary_10_1002_anie_202110050 crossref_primary_10_1002_ange_202504723 crossref_primary_10_1039_D4SC02357A crossref_primary_10_1002_ange_202108283 crossref_primary_10_1002_anie_202205684 crossref_primary_10_1002_adma_202110547 crossref_primary_10_1038_s41377_024_01490_6 crossref_primary_10_1002_ange_202116927 crossref_primary_10_1002_ange_202209539 crossref_primary_10_1038_s41467_023_38086_4 crossref_primary_10_1002_ange_202211172 crossref_primary_10_1246_bcsj_20210403 crossref_primary_10_1002_adom_202403421 crossref_primary_10_1039_D5SC01751C crossref_primary_10_1002_adpr_202200201 crossref_primary_10_1002_adom_202100516 crossref_primary_10_1002_anie_202415113 crossref_primary_10_1002_adom_202100752 crossref_primary_10_1002_qua_27454 crossref_primary_10_1002_adma_202403061 crossref_primary_10_1002_adom_202302987 crossref_primary_10_1002_anie_202209343 crossref_primary_10_1021_acs_chemrev_5c00021 crossref_primary_10_1002_anie_202212861 crossref_primary_10_1002_ange_202215522 crossref_primary_10_1002_adma_202415289 crossref_primary_10_1016_j_orgel_2022_106668 crossref_primary_10_1002_adma_202100652 crossref_primary_10_1021_jacs_2c10946 crossref_primary_10_1021_jacs_3c02873 crossref_primary_10_1002_ange_202312451 crossref_primary_10_1039_D2QM01304E crossref_primary_10_3390_molecules28010134 crossref_primary_10_1016_j_cej_2021_134381 crossref_primary_10_1002_adts_202200056 crossref_primary_10_1002_anie_202207293 crossref_primary_10_1016_j_cej_2024_158958 crossref_primary_10_1002_adom_202400490 crossref_primary_10_1016_j_cej_2024_152857 crossref_primary_10_1002_adfm_202204352 crossref_primary_10_1002_adma_202107951 crossref_primary_10_1039_D1SC02042K crossref_primary_10_1002_adfm_202310042 crossref_primary_10_1016_j_cej_2025_167258 crossref_primary_10_1007_s11426_022_1447_4 crossref_primary_10_3390_molecules27228099 crossref_primary_10_1002_ange_202209984 crossref_primary_10_1002_anie_202116927 crossref_primary_10_1016_j_cej_2022_138498 crossref_primary_10_1016_j_cej_2023_147409 crossref_primary_10_1002_cjoc_202000619 crossref_primary_10_1002_ange_202201588 crossref_primary_10_1007_s10118_023_2977_4 crossref_primary_10_1039_D2CC03347J crossref_primary_10_1016_j_cej_2021_131691 crossref_primary_10_1002_ange_202016265 crossref_primary_10_1002_adom_202100180 crossref_primary_10_1002_ange_202301988 crossref_primary_10_6023_A23040186 crossref_primary_10_1038_s41467_024_46619_8 crossref_primary_10_1039_D2MH00511E crossref_primary_10_1038_s42004_022_00668_6 crossref_primary_10_1002_ange_202415113 crossref_primary_10_1002_smll_202411961 crossref_primary_10_1016_j_orgel_2023_106973 crossref_primary_10_1021_jacs_2c03550 crossref_primary_10_1039_D1MH00028D crossref_primary_10_1038_s42004_022_00766_5 crossref_primary_10_1002_bio_4624 crossref_primary_10_1002_adma_202205166 crossref_primary_10_1002_ange_202103187 crossref_primary_10_1016_j_cej_2021_133078 crossref_primary_10_1002_ange_202306768 crossref_primary_10_1002_advs_202205070 crossref_primary_10_1002_anie_202414383 crossref_primary_10_1002_ange_202304104 crossref_primary_10_1039_D3SC00246B crossref_primary_10_1002_anie_202412720 crossref_primary_10_1007_s11426_022_1469_2 crossref_primary_10_1002_anie_202216473 crossref_primary_10_1039_D3ME00127J crossref_primary_10_1016_j_dyepig_2025_113019 crossref_primary_10_1039_D3QM00100H crossref_primary_10_1039_D5TC01938A crossref_primary_10_1002_adom_202301217 crossref_primary_10_1002_ange_202105032 crossref_primary_10_1002_ange_202510891 crossref_primary_10_1039_D5TC01861G crossref_primary_10_1002_anie_202103187 crossref_primary_10_1002_ange_202313084 crossref_primary_10_1002_adom_202200952 crossref_primary_10_1002_ange_202306413 crossref_primary_10_1002_marc_202200079 crossref_primary_10_1002_adom_202401671 crossref_primary_10_1021_acs_chemmater_5c01400 crossref_primary_10_1002_adma_202106954 crossref_primary_10_1002_ange_202414383 crossref_primary_10_1016_j_orgel_2021_106275 crossref_primary_10_1002_anie_202203844 crossref_primary_10_1002_anie_202200337 crossref_primary_10_1016_j_cej_2023_147977 crossref_primary_10_1039_D3QM00498H crossref_primary_10_1016_j_cej_2022_137517 crossref_primary_10_1002_adom_202001845 crossref_primary_10_1002_anie_202510891 crossref_primary_10_1002_smm2_1060 crossref_primary_10_1002_adma_202416224 crossref_primary_10_1039_D5SC05501F crossref_primary_10_1002_adom_202402875 crossref_primary_10_1002_adma_202305125 crossref_primary_10_3390_ijms23094949 crossref_primary_10_3390_molecules28020811 crossref_primary_10_1002_ange_202110050 crossref_primary_10_1002_anie_202306413 crossref_primary_10_1002_adma_202005630 crossref_primary_10_1002_ange_202200337 crossref_primary_10_1002_adfm_202213461 crossref_primary_10_1002_ange_202203844 crossref_primary_10_1039_D1MH01383A crossref_primary_10_1002_ange_202216473 crossref_primary_10_1002_agt2_182 crossref_primary_10_1002_advs_202200707 crossref_primary_10_1002_anie_202306768 crossref_primary_10_1002_anie_202304104 crossref_primary_10_1002_adom_202203002 crossref_primary_10_1002_adom_202100825 crossref_primary_10_1016_j_dyepig_2025_113147 crossref_primary_10_1002_adma_202412761 crossref_primary_10_1002_ange_202017328 crossref_primary_10_1016_j_dyepig_2024_112596 crossref_primary_10_1002_adom_202202950 crossref_primary_10_59717_j_xinn_mater_2023_100041 crossref_primary_10_1002_anie_202211172 crossref_primary_10_1002_anie_202016265 crossref_primary_10_1002_anie_202313084 crossref_primary_10_1038_s41377_021_00559_w crossref_primary_10_1002_anie_202106642 crossref_primary_10_1016_j_cej_2024_155864 crossref_primary_10_1002_anie_202301988 crossref_primary_10_1007_s40242_023_3167_1 crossref_primary_10_1016_j_jallcom_2021_161319 crossref_primary_10_1002_ange_202117181 crossref_primary_10_1002_adom_202500848 crossref_primary_10_1002_anie_202215522 crossref_primary_10_1016_j_cej_2021_129185 crossref_primary_10_1016_j_reactfunctpolym_2021_104898 crossref_primary_10_1016_j_cej_2024_148781 crossref_primary_10_1002_anie_202113075 crossref_primary_10_1002_ange_202205684 crossref_primary_10_1002_adom_202202267 crossref_primary_10_1002_sdtp_16255 crossref_primary_10_1021_jacs_1c11659 crossref_primary_10_1039_D5TC02897C crossref_primary_10_1002_anie_202104361 crossref_primary_10_1039_D3RE00410D crossref_primary_10_1002_anie_202108283 crossref_primary_10_1002_ange_202201886 crossref_primary_10_1002_anie_202209984 crossref_primary_10_1016_j_dyepig_2021_109474 crossref_primary_10_1002_adom_202300298 crossref_primary_10_1002_flm2_70002 crossref_primary_10_1039_D1PY01700D crossref_primary_10_1039_D5TC01813G crossref_primary_10_1002_adma_202211871 crossref_primary_10_1038_s41566_022_01106_8 crossref_primary_10_1016_j_cej_2021_131169 crossref_primary_10_1016_j_cej_2025_165947 crossref_primary_10_1016_j_dyepig_2023_111858 crossref_primary_10_1002_smll_202106462 crossref_primary_10_1002_anie_202201588 crossref_primary_10_1002_cphc_202500201 crossref_primary_10_1016_j_dyepig_2021_109224 crossref_primary_10_1002_adom_202101343 crossref_primary_10_1002_ange_202418770 crossref_primary_10_1002_adom_202200504 crossref_primary_10_1002_chem_202201006 crossref_primary_10_1002_adom_202201714 crossref_primary_10_1088_2058_8585_acf326 crossref_primary_10_1002_sdtp_15662 crossref_primary_10_6023_A23020051 crossref_primary_10_1016_j_cjche_2023_02_017 crossref_primary_10_1002_adom_202402939 crossref_primary_10_1002_adom_202102513 crossref_primary_10_1002_anie_202415856 crossref_primary_10_1002_adma_202301018 crossref_primary_10_1002_adom_202101789 crossref_primary_10_1002_anie_202017328 crossref_primary_10_1002_anie_202504723 crossref_primary_10_1002_macp_202200023 crossref_primary_10_1002_anie_202312451 crossref_primary_10_1002_ange_202207293 crossref_primary_10_1002_ange_202109335 crossref_primary_10_1002_adfm_202201032 crossref_primary_10_1002_adma_202310417 crossref_primary_10_1002_anie_202117181 crossref_primary_10_1016_j_cej_2023_147123 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1016_j_cplett_2022_140257 crossref_primary_10_1039_D5QO00146C crossref_primary_10_1002_adfm_202306170 crossref_primary_10_1002_adma_202201778 crossref_primary_10_1002_adfm_202102017 crossref_primary_10_1002_smll_202107574 crossref_primary_10_1002_ange_202212861 crossref_primary_10_1246_bcsj_20200372 crossref_primary_10_1016_j_cej_2022_138545 crossref_primary_10_1002_ange_202209343 crossref_primary_10_1002_adom_202201898 crossref_primary_10_1002_adma_202109147 crossref_primary_10_1039_D5TA03374H crossref_primary_10_1080_15980316_2024_2403982 crossref_primary_10_1002_anie_202217045 crossref_primary_10_1039_D1SC05692A crossref_primary_10_1002_anie_202012891 crossref_primary_10_1002_anie_202209539 crossref_primary_10_1002_adom_202500140 crossref_primary_10_1038_s41427_021_00318_8 crossref_primary_10_1016_j_cej_2024_157676 crossref_primary_10_1039_D2SC01543A crossref_primary_10_1002_adfm_202419679 crossref_primary_10_1002_adma_202400158 crossref_primary_10_1002_chem_202104214 crossref_primary_10_1002_ange_202106642 crossref_primary_10_1002_ange_202415856 crossref_primary_10_1039_D5TC01061F crossref_primary_10_3390_ijms241512362 crossref_primary_10_1002_adom_202403459 crossref_primary_10_1002_adom_202101410 crossref_primary_10_1016_j_matt_2025_102188 crossref_primary_10_1002_chem_202404078 crossref_primary_10_1002_agt2_445 crossref_primary_10_1002_chem_202201605 crossref_primary_10_6023_A22110472 crossref_primary_10_1038_s41467_023_41440_1 crossref_primary_10_1002_adma_202300997 crossref_primary_10_1039_D4SC08708A crossref_primary_10_1002_adma_202300510 crossref_primary_10_1002_anie_202204652 crossref_primary_10_1002_adma_202208378 crossref_primary_10_1002_ange_202012891 crossref_primary_10_1039_D4QM00720D crossref_primary_10_1039_D3MH00881A crossref_primary_10_1002_adma_202402905 crossref_primary_10_1002_anie_202109335 crossref_primary_10_1002_adom_202500702 crossref_primary_10_3390_ma18092040 crossref_primary_10_1002_adom_202403566 crossref_primary_10_1016_j_cej_2023_146484 |
| Cites_doi | 10.1002/anie.201912340 10.1021/ja310372f 10.1007/978-3-642-03432-9_5 10.1021/j100012a014 10.1002/adma.201501090 10.1002/adma.201503225 10.1021/jacs.6b12124 10.1063/1.2929846 10.1039/C6CS00368K 10.1002/adma.201402188 10.1021/acs.chemmater.6b05324 10.1038/s41566-019-0415-5 10.1002/anie.201506335 10.1002/adma.201906614 10.1039/C8TC06575F 10.1002/anie.201500203 10.1038/s41563-019-0465-6 10.1002/adfm.201802031 10.1016/j.chemphys.2018.06.011 10.1002/adma.201604223 10.1002/adom.201901627 10.1039/C9TC05950D 10.1002/adfm.201704927 10.1038/s41566-019-0476-5 10.1038/347539a0 10.1002/cphc.201600662 10.1039/c3tc32098g 10.1002/adma.201300753 10.1038/16393 10.1021/acs.orglett.9b00337 10.1021/acsami.8b19635 10.1002/adma.201401393 10.1002/anie.201707193 10.1063/1.98799 10.1021/jacs.7b10578 10.1038/ncomms9476 10.1038/nature11687 10.1038/s41467-019-08495-5 10.1039/C9TC04115J 10.1002/anie.201806323 10.1063/1.1992658 10.1002/adfm.200600651 10.1021/acs.orglett.9b04483 10.1002/adom.201900130 10.1002/adfm.201802558 10.1038/nmat4154 10.1002/anie.201508270 10.1002/anie.201600113 10.1002/adma.201505491 10.1021/jacs.6b01674 10.1002/adom.201801536 10.1002/anie.201911266 10.1038/s41467-020-15558-5 10.1021/ja510144h 10.1021/jacs.6b04092 10.1038/ncomms13680 10.1002/adfm.201901025 10.1039/C4CP01428F 10.1002/adma.201505026 10.1038/nphoton.2014.12 10.1002/adma.201605444 10.1021/acs.orglett.9b03342 |
| ContentType | Journal Article |
| Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202004072 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202004072 ADMA202004072 |
| Genre | article |
| GrantInformation_xml | – fundername: CREST funderid: JPMJCR18R3 – fundername: JASRI funderid: 2017A1132; 2017B1073; 2018A1114; 2018B1125; 2019A1142; 2019B1063 – fundername: Grant‐in‐Aid for Scientific Research funderid: JP18H02051 – fundername: Challenging Research funderid: 19K22191 – fundername: Fukuoka Naohiko Memorial Foundation – fundername: Asahi Glass Foundation – fundername: JSPS – fundername: Grant‐in‐Aid for Early‐Career Scientists funderid: 20K15291 – fundername: JST |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4162-1b02d7664bc68cb2b0f64633781f9446bcdab38e7b09fc2350b39c59cbfecc8f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 292 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564015100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 23 09:56:02 EST 2025 Sun Nov 09 06:06:32 EST 2025 Tue Nov 18 20:55:32 EST 2025 Sat Nov 29 07:24:45 EST 2025 Wed Jan 22 16:32:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4162-1b02d7664bc68cb2b0f64633781f9446bcdab38e7b09fc2350b39c59cbfecc8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1088-1932 0000-0002-7483-9525 |
| PQID | 2448812348 |
| PQPubID | 2045203 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_2438991823 proquest_journals_2448812348 crossref_citationtrail_10_1002_adma_202004072 crossref_primary_10_1002_adma_202004072 wiley_primary_10_1002_adma_202004072_ADMA202004072 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1990 1999; 347 397 2016 2016 2017 2019; 17 7 139 18 2012 2013 2014 2014 2015 2015 2016 2018 2018; 492 25 8 26 14 54 55 28 12 1987; 51 2014 2015; 136 6 2014 2015 2016 2016 2017 2017 2018 2019; 26 54 28 28 56 29 28 29 2019; 21 2018 2019 2020; 140 13 32 2019; 10 2018 2019 2019 2019 2019 2019 2020 2020 2020; 57 13 7 58 7 7 8 59 11 2015; 54 2005 2007 2014 2015; 87 17 2 27 2020; 22 2017 2017 2017 2018; 29 46 29 28 2019 2019 2020; 11 7 8 2016; 28 2012 2016 2016 2019; 134 138 138 21 1995 2008 2009 2014 2018; 99 128 97 16 515 Sato T. (e_1_2_4_8_3) 2009 e_1_2_4_18_8 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_3_3 e_1_2_4_5_1 e_1_2_4_3_2 e_1_2_4_3_5 e_1_2_4_7_1 e_1_2_4_3_4 e_1_2_4_3_7 e_1_2_4_9_1 e_1_2_4_3_6 e_1_2_4_9_3 e_1_2_4_3_8 e_1_2_4_9_2 e_1_2_4_9_5 e_1_2_4_9_4 e_1_2_4_9_7 e_1_2_4_9_6 e_1_2_4_10_1 e_1_2_4_9_9 e_1_2_4_10_2 e_1_2_4_9_8 e_1_2_4_10_3 e_1_2_4_12_1 e_1_2_4_14_1 e_1_2_4_14_2 e_1_2_4_16_1 Wu T.‐L. (e_1_2_4_3_9) 2018; 12 e_1_2_4_16_3 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_18_3 e_1_2_4_16_4 e_1_2_4_18_2 e_1_2_4_18_5 e_1_2_4_18_4 e_1_2_4_18_7 e_1_2_4_18_6 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_4_1 e_1_2_4_4_4 e_1_2_4_4_3 e_1_2_4_6_1 e_1_2_4_8_2 e_1_2_4_8_1 e_1_2_4_8_4 e_1_2_4_8_5 e_1_2_4_11_1 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_13_3 e_1_2_4_15_1 e_1_2_4_13_4 e_1_2_4_15_2 e_1_2_4_15_3 e_1_2_4_17_2 e_1_2_4_17_1 e_1_2_4_17_4 e_1_2_4_17_3 |
| References_xml | – volume: 136 6 start-page: 8476 year: 2014 2015 publication-title: J. Am. Chem. Soc. Nat. Commun. – volume: 29 46 29 28 start-page: 1946 915 year: 2017 2017 2017 2018 publication-title: Chem. Mater. Chem. Soc. Rev. Adv. Mater. Adv. Funct. Mater. – volume: 17 7 139 18 start-page: 2956 4042 1084 year: 2016 2016 2017 2019 publication-title: ChemPhysChem Nat. Commun. J. Am. Chem. Soc. Nat. Mater. – volume: 28 start-page: 2777 year: 2016 publication-title: Adv. Mater. – volume: 57 13 7 58 7 7 8 59 11 start-page: 540 3082 2272 3156 1765 year: 2018 2019 2019 2019 2019 2019 2020 2020 2020 publication-title: Angew. Chem., Int. Ed. Nat. Photonics Adv. Opt. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. C J. Mater. Chem. C J. Mater. Chem. C Angew. Chem., Int. Ed. Nat. Commun. – volume: 11 7 8 year: 2019 2019 2020 publication-title: ACS Appl. Mater. Interfaces Adv. Opt. Mater. Adv. Optical Mater. – volume: 492 25 8 26 14 54 55 28 12 start-page: 234 3707 326 5198 330 5739 23 year: 2012 2013 2014 2014 2015 2015 2016 2018 2018 publication-title: Nature Adv. Mater. Nat. Photonics Adv. Mater. Nat. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nat. Photonics – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 347 397 start-page: 539 121 year: 1990 1999 publication-title: Nature Nature – volume: 21 start-page: 9311 year: 2019 publication-title: Org. Lett. – volume: 22 start-page: 700 year: 2020 publication-title: Org. Lett. – volume: 10 start-page: 597 year: 2019 publication-title: Nat. Commun. – volume: 134 138 138 21 start-page: 5210 9021 1770 year: 2012 2016 2016 2019 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. Org. Lett. – volume: 140 13 32 start-page: 1195 678 year: 2018 2019 2020 publication-title: J. Am. Chem. Soc. Nat. Photonics Adv. Mater. – volume: 26 54 28 28 56 29 28 29 start-page: 6642 5677 181 4019 year: 2014 2015 2016 2016 2017 2017 2018 2019 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater. Adv. Funct. Mater. – volume: 51 start-page: 913 year: 1987 publication-title: Appl. Phys. Lett. – volume: 87 17 2 27 start-page: 191 1474 7236 year: 2005 2007 2014 2015 publication-title: Appl. Phys. Lett. Adv. Funct. Mater. J. Mater. Chem. C Adv. Mater. – volume: 99 128 97 16 515 start-page: 3951 99 728 year: 1995 2008 2009 2014 2018 end-page: 129 publication-title: J. Phys. Chem. J. Chem. Phys. Phys. Chem. Chem. Phys. Chem. Phys. – ident: e_1_2_4_9_8 doi: 10.1002/anie.201912340 – ident: e_1_2_4_13_1 doi: 10.1021/ja310372f – start-page: 99 volume-title: The Jahn‐Teller Effect: Fundamentals and Implications for Physics and Chemistry year: 2009 ident: e_1_2_4_8_3 doi: 10.1007/978-3-642-03432-9_5 – ident: e_1_2_4_8_1 doi: 10.1021/j100012a014 – ident: e_1_2_4_17_4 doi: 10.1002/adma.201501090 – ident: e_1_2_4_18_3 doi: 10.1002/adma.201503225 – ident: e_1_2_4_16_3 doi: 10.1021/jacs.6b12124 – ident: e_1_2_4_8_2 doi: 10.1063/1.2929846 – ident: e_1_2_4_4_2 doi: 10.1039/C6CS00368K – ident: e_1_2_4_18_1 doi: 10.1002/adma.201402188 – ident: e_1_2_4_4_1 doi: 10.1021/acs.chemmater.6b05324 – ident: e_1_2_4_9_2 doi: 10.1038/s41566-019-0415-5 – ident: e_1_2_4_5_1 doi: 10.1002/anie.201506335 – ident: e_1_2_4_10_3 doi: 10.1002/adma.201906614 – ident: e_1_2_4_9_5 doi: 10.1039/C8TC06575F – ident: e_1_2_4_18_2 doi: 10.1002/anie.201500203 – ident: e_1_2_4_16_4 doi: 10.1038/s41563-019-0465-6 – ident: e_1_2_4_3_8 doi: 10.1002/adfm.201802031 – ident: e_1_2_4_8_5 doi: 10.1016/j.chemphys.2018.06.011 – ident: e_1_2_4_18_6 doi: 10.1002/adma.201604223 – ident: e_1_2_4_15_3 doi: 10.1002/adom.201901627 – ident: e_1_2_4_9_7 doi: 10.1039/C9TC05950D – ident: e_1_2_4_18_7 doi: 10.1002/adfm.201704927 – ident: e_1_2_4_10_2 doi: 10.1038/s41566-019-0476-5 – ident: e_1_2_4_2_1 doi: 10.1038/347539a0 – volume: 12 start-page: 23 year: 2018 ident: e_1_2_4_3_9 publication-title: Nat. Photonics – ident: e_1_2_4_16_1 doi: 10.1002/cphc.201600662 – ident: e_1_2_4_17_3 doi: 10.1039/c3tc32098g – ident: e_1_2_4_3_2 doi: 10.1002/adma.201300753 – ident: e_1_2_4_2_2 doi: 10.1038/16393 – ident: e_1_2_4_13_4 doi: 10.1021/acs.orglett.9b00337 – ident: e_1_2_4_15_1 doi: 10.1021/acsami.8b19635 – ident: e_1_2_4_3_4 doi: 10.1002/adma.201401393 – ident: e_1_2_4_18_5 doi: 10.1002/anie.201707193 – ident: e_1_2_4_1_1 doi: 10.1063/1.98799 – ident: e_1_2_4_10_1 doi: 10.1021/jacs.7b10578 – ident: e_1_2_4_14_2 doi: 10.1038/ncomms9476 – ident: e_1_2_4_3_1 doi: 10.1038/nature11687 – ident: e_1_2_4_11_1 doi: 10.1038/s41467-019-08495-5 – ident: e_1_2_4_9_6 doi: 10.1039/C9TC04115J – ident: e_1_2_4_9_1 doi: 10.1002/anie.201806323 – ident: e_1_2_4_17_1 doi: 10.1063/1.1992658 – ident: e_1_2_4_17_2 doi: 10.1002/adfm.200600651 – ident: e_1_2_4_12_1 doi: 10.1021/acs.orglett.9b04483 – ident: e_1_2_4_9_3 doi: 10.1002/adom.201900130 – ident: e_1_2_4_4_4 doi: 10.1002/adfm.201802558 – ident: e_1_2_4_3_5 doi: 10.1038/nmat4154 – ident: e_1_2_4_3_6 doi: 10.1002/anie.201508270 – ident: e_1_2_4_3_7 doi: 10.1002/anie.201600113 – ident: e_1_2_4_6_1 doi: 10.1002/adma.201505491 – ident: e_1_2_4_13_2 doi: 10.1021/jacs.6b01674 – ident: e_1_2_4_15_2 doi: 10.1002/adom.201801536 – ident: e_1_2_4_9_4 doi: 10.1002/anie.201911266 – ident: e_1_2_4_9_9 doi: 10.1038/s41467-020-15558-5 – ident: e_1_2_4_14_1 doi: 10.1021/ja510144h – ident: e_1_2_4_13_3 doi: 10.1021/jacs.6b04092 – ident: e_1_2_4_16_2 doi: 10.1038/ncomms13680 – ident: e_1_2_4_18_8 doi: 10.1002/adfm.201901025 – ident: e_1_2_4_8_4 doi: 10.1039/C4CP01428F – ident: e_1_2_4_18_4 doi: 10.1002/adma.201505026 – ident: e_1_2_4_3_3 doi: 10.1038/nphoton.2014.12 – ident: e_1_2_4_4_3 doi: 10.1002/adma.201605444 – ident: e_1_2_4_7_1 doi: 10.1021/acs.orglett.9b03342 |
| SSID | ssj0009606 |
| Score | 2.693883 |
| Snippet | Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light‐emitting diodes (OLEDs),... Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs),... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2004072 |
| SubjectTerms | Boron Efficiency Electroluminescence Emitters Energy gap Fluorescence Interlayers Ionization potentials Mass production Materials science Molecular orbitals multiple resonance effect Organic light emitting diodes Oxygen atoms Photoluminescence Polymers pure green Quantum efficiency Resonance solution‐processable Synthesis thermally activated delayed fluorescence |
| Title | Solution‐Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202004072 https://www.proquest.com/docview/2448812348 https://www.proquest.com/docview/2438991823 |
| Volume | 32 |
| WOSCitedRecordID | wos000564015100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdbuof1oftP03VFhcGeRGXJkeTHdGnoQ1tKWSFvRjrLUHCdkTSFvPUj9DP2k_QkO076MAbbk218loXuTjrp7n5HyHeXFmAFCCYgKVlaFiXLitIxp2GgbPQ8mVhsQl9cmMkku9zI4m_wIboDt6AZcb4OCm7d_GgNGmqLiBsUuMw1TsJbAoU37ZGt0dX4-mwNvKtifc3g72OZSs0KuJGLo5ctvFyY1tbmps0aF53xu__v7nuy0xqcdNhIyAfyytcfyfYGDOEnslydjT09PLaJAyGhil4uZp7GwByK0oQzeFUt6RBiQTRf0JGv7BKv42oxnUVUKPD05PYm5AfRY1wdCzqtKRqY9LyNWqTBWRAQPpAuxpF8Jtfjk18_T1lbkoEBWm6CJY6LQiuVOlAGnHC8VKmSUpukzHBn6aCwThqvHc9KEHLAncxgkIHDRsGU8gvp1dPa7xKqBS7PifTaWplaHrIBlEu4lBxQTjLZJ2zFjxxavPJQNqPKG6RlkYchzbsh7ZMfHf3vBqnjj5T7K_bmrcbOczRzDBo7MjV9cti9Rl0LDhRb--ki0AQ0QtyRYedEZPZf_pQPR-fD7mnvXz76St6G-yZ-cJ_07mYL_428gfu7m_nsgLzWE3PQyvwzkqYDeQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9KWtj6sHX_WLauU2GwJ1FZcmz5MVsaWpqEUlrom5HOMhQ8Z6RNIW_7CPuM-yQ7yY7TPozB2JOxfZaF7k466e5-B_DJxgUaiZJLjEoel0XJs6K03KY4SEzwPOlQbCKdzfT1dXbeRhP6XJgGH6I7cPOaEeZrr-D-QPpogxpqigAc5NksUpqFt2OSpUEPtkcX46vJBnk3CQU2vcOPZ0ms18iNQh49buHxyrQxNx8arWHVGT__D_3dg2etycmGjYy8gC1Xv4TdB0CEr2C1Ph379eNnmzrgU6rY-XLhWAjNYSRPNIdX1YoNMZREcwUbucqs6DqulvNFwIVCx46_3fgMIfaF1seCzWtGJiabtnGLzLsLPMYH0YVIktdwNT6-_HrC26IMHMl2kzyyQhZpksQWE41WWlEmNPAq1VGZ0d7SYmGs0i61IitRqoGwKsNBhpYaRV2qN9Cr57V7CyyVtEBHyqXGqNgInw-Q2EgoJZAkJVN94GuG5NgilvvCGVXeYC3L3A9p3g1pHz539N8brI4_Uu6v-Zu3Onubk6GjydxRse7DYfeatM27UEzt5ktP4_EIaU9GnZOB23_5Uz4cTYfd3bt_-egjPDm5nE7yyens7D089c-baMJ96N0tlu4D7OD93c3t4qAV_d__egaB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYhCaU9NP0L2TZtVQj0JCJLXlk6brMxLU2WpSSQm9EvBBxv2GQLe8sj5Bn7JB3JXm9yKIXSk7E9loVmRhppZr5B6MDkzmpmGWE2CyQPLhDlgiGmsEOhk-dJpmITxWQiLy7UtIsmjLkwLT5Ef-AWNSPN11HB_bULh2vUUO0ScFBkMy1gFt7Kh0qAbm6Nf5TnJ2vkXZEKbEaHH1EilyvkRsoOH7fweGVam5sPjda06pQ7_6G_L9DzzuTEo1ZGXqIN37xCzx4AEb5Gy9Xp2K-7-y51IKZU4eli7nEKzcEgTzCH1_USj2wqieYdHvtaL-Fa1ovZPOFCWY-Pry5jhhD-Auujw7MGg4mJT7u4RRzdBRHjA-hSJMkbdF4enx19JV1RBmLBdmMkM5S5QojcWCGtYYYGkQvOC5kFBXtLY502XPrCUBUs40NquLJDZQ00amXgu2izmTV-D-GCwQKdcV9ozXNNYz6AMBnlnFqQFMUHiKwYUtkOsTwWzqirFmuZVXFIq35IB-hzT3_dYnX8kXJ_xd-q09mbCgwdCeYOz-UAfepfg7ZFF4pu_GwRaSIeIezJoHMscfsvf6pG49NRf_f2Xz76iJ5Mx2V18m3y_R16Gh-3wYT7aPN2vvDv0bb9eXt5M__QSf5vgJgF_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution%E2%80%90Processable+Pure+Green+Thermally+Activated+Delayed+Fluorescence+Emitter+Based+on+the+Multiple+Resonance+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ikeda%2C+Naoya&rft.au=Oda%2C+Susumu&rft.au=Matsumoto%2C+Ryuji&rft.au=Yoshioka%2C+Mayu&rft.date=2020-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202004072&rft.externalDBID=10.1002%252Fadma.202004072&rft.externalDocID=ADMA202004072 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |