A Retinol Isotope Dilution Equation Predicts Both Group and Individual Total Body Vitamin A Stores in Adults Based on Data from an Early Postdosing Blood Sample

Retinol isotope dilution (RID) is used to determine vitamin A total body stores (TBS) after an oral dose of a vitamin A stable isotope. The generally accepted prediction equation proposed by Olson's group in 1989 (Furr et al. Am J Clin Nutr 1989;49:713-6) includes factors related to dose absorp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of nutrition Ročník 146; číslo 10; s. 2137
Hlavní autoři: Green, Michael H, Ford, Jennifer Lynn, Green, Joanne Balmer, Berry, Philip, Boddy, Alan V, Oxley, Anthony, Lietz, Georg
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.10.2016
Témata:
ISSN:1541-6100, 1541-6100
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Retinol isotope dilution (RID) is used to determine vitamin A total body stores (TBS) after an oral dose of a vitamin A stable isotope. The generally accepted prediction equation proposed by Olson's group in 1989 (Furr et al. Am J Clin Nutr 1989;49:713-6) includes factors related to dose absorption and retention, isotope equilibration in plasma compared with stores, catabolism during the mixing period, and the optimal time for measuring plasma isotope enrichment. The objectives were 1) to develop a modified RID equation and identify an earlier sampling time for predicting TBS and 2) to improve prediction in individuals as well as groups. To develop a modified RID equation, we used results of model-based compartmental analysis [the Simulation, Analysis and Modeling software (WinSAAM version 3.0.8; http://www.WinSAAM.org)] of plasma [ C ]retinol kinetic data from 32 previously studied, healthy young adults of European ancestry who had moderate vitamin A intakes and who ingested 2.95 μmol [ C ]retinyl acetate. We examined the time dependence of factors in the prediction equation related to absorption/retention (Fa) and isotope equilibration (S) and determined that 4 or 5 d postdosing was the optimal sampling time. TBS calculated by the equation TBS = Fa x S x (1/SA ), where SA is plasma retinol specific activity (fraction of dose/μmol), were highly correlated with model-predicted TBS (r = 0.95 and 0.96 for 4 and 5 d, respectively; P < 0.001); predictions for individuals were also highly correlated (R = 0.94 and 0.94; P < 0.001). The equation TBS ≈ 0.5 × (1/SA ) accurately predicted vitamin A TBS in this group of 32 healthy young adults and its individual members with the use of data from 1 blood sample taken 4 d after isotope administration.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1541-6100
1541-6100
DOI:10.3945/jn.116.233676