CodingDiv: analyzing SNP-level microdiversity to discriminate between coding and noncoding regions in viral genomes

Abstract Summary Viral genes, that are frequently small genes and/or with large overlaps, are still difficult to predict accurately. To help predict all genes in viral genomes, we provide CodingDiv that detects SNP-level microdiversity of all potential coding regions, using metagenomic reads and/or...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 39; číslo 7
Hlavní autoři: Olo Ndela, Eric, Enault, François
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford University Press 01.07.2023
Oxford University Press (OUP)
Témata:
ISSN:1367-4811, 1367-4803, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract Summary Viral genes, that are frequently small genes and/or with large overlaps, are still difficult to predict accurately. To help predict all genes in viral genomes, we provide CodingDiv that detects SNP-level microdiversity of all potential coding regions, using metagenomic reads and/or similar sequences from external databases. Protein coding regions can then be identified as the ones containing more synonymous SNPs than unfavorable nonsynonymous substitutions SNPs. Availability and implementation CodingDiv is released under the GPL license. Source code is available at https://github.com/ericolo/codingDiv. The software can be installed and used through a docker container.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4811
1367-4803
1367-4811
DOI:10.1093/bioinformatics/btad408