Multitask Air-Quality Prediction Based on LSTM-Autoencoder Model
With the development of the data-driven modeling techniques, using the neural network to simulate the transport process of atmospheric pollutants and constructing <inline-formula> <tex-math notation="LaTeX">{\textrm {PM}}_{2.5} </tex-math></inline-formula> time-seri...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 5; s. 2577 - 2586 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | With the development of the data-driven modeling techniques, using the neural network to simulate the transport process of atmospheric pollutants and constructing <inline-formula> <tex-math notation="LaTeX">{\textrm {PM}}_{2.5} </tex-math></inline-formula> time-series prediction model have become a hot topic. The existing data-driven approaches often ignore the dynamical relationships among multiple sites in urban areas, which results in nonideal prediction accuracy. In response to this problem, this article proposes a long short-term memory (LSTM) autoencoder multitask learning model to predict <inline-formula> <tex-math notation="LaTeX">{\textrm {PM}}_{2.5} </tex-math></inline-formula> time series in multiple locations city wide. The model could implicitly and automatically excavate the intrinsic relevance among the pollutants in different stations. And the meteorological information from the monitoring stations is fully utilized, which is beneficial for the performance of the proposed model. Specifically, multilayer LSTM networks can simulate the spatiotemporal characteristics of urban air pollution particles. And using the stacked autoencoder to encode the key evolution pattern of urban meteorological systems could provide important auxiliary information for <inline-formula> <tex-math notation="LaTeX">{\textrm {PM}}_{2.5} </tex-math></inline-formula> time-series prediction. In addition, multitask learning could automatically discover the dynamical relationship between multiple key pollution time series and solve the problem of insufficient use of multisite information in the modeling process of the traditional data-driven methods. The simulation results of <inline-formula> <tex-math notation="LaTeX">{\textrm {PM}}_{2.5} </tex-math></inline-formula> prediction in Beijing indicate the effectiveness of the proposed method. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2019.2945999 |