Personalized Models of Human Atrial Electrophysiology Derived From Endocardial Electrograms

Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a cha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on biomedical engineering Ročník 64; číslo 4; s. 735 - 742
Hlavní autori: Corrado, Cesare, Whitaker, John, Chubb, Henry, Williams, Steven, Wright, Matthew, Gill, Jaswinder, O'Neill, Mark D., Niederer, Steven A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.04.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9294, 1558-2531
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Objective : Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements. Methods : We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a <inline-formula><tex-math notation="LaTeX">s_\text{1}\_ s_\text{2}</tex-math></inline-formula> pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of <inline-formula><tex-math notation="LaTeX">21.9\pm 16.1\%</tex-math></inline-formula> and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of <inline-formula><tex-math notation="LaTeX">4.4\pm 6.9\%</tex-math></inline-formula>. Results : We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of <inline-formula><tex-math notation="LaTeX">\sim 5\%</tex-math></inline-formula> and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases. Conclusion and significance : We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable protocol to characterize cellular properties and predict tissue electrophysiological function.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2016.2574619