New analysis and results for the Frank–Wolfe method
We present new results for the Frank–Wolfe method (also known as the conditional gradient method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size ru...
Saved in:
| Published in: | Mathematical programming Vol. 155; no. 1-2; pp. 199 - 230 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present new results for the Frank–Wolfe method (also known as the conditional gradient method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size rules and computational guarantees that depend naturally on the warm-start quality of the initial (and subsequent) iterates. Our results include computational guarantees for both duality/bound gaps and the so-called FW gaps. Lastly, we present complexity bounds in the presence of approximate computation of gradients and/or linear optimization subproblem solutions. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-014-0841-6 |