New analysis and results for the Frank–Wolfe method

We present new results for the Frank–Wolfe method (also known as the conditional gradient method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size ru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 155; číslo 1-2; s. 199 - 230
Hlavní autori: Freund, Robert M., Grigas, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2016
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We present new results for the Frank–Wolfe method (also known as the conditional gradient method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size rules and computational guarantees that depend naturally on the warm-start quality of the initial (and subsequent) iterates. Our results include computational guarantees for both duality/bound gaps and the so-called FW gaps. Lastly, we present complexity bounds in the presence of approximate computation of gradients and/or linear optimization subproblem solutions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0841-6