Design and simulation of high efficiency KSnI3 based perovskite solar cells using DFT and SCAPS-1D

This study presents a novel KSnI 3 -based heterostructure solar cell design, incorporating efficient electron transport layers (ETLs) such as CeO₂, and hole transport layers (HTLs) based on CBTS. Using Density Functional Theory (DFT), the electrical and optical properties of KSnI 3 are characterized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 37022 - 19
Hauptverfasser: Yousfi, A., Saidani, O., Benmakhlouf, A., Helaimia, T., Alsubaie, Abdullah Saad, Al Ahmed, Sheikh Rashel, Islam, Md. Rasidul
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 23.10.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a novel KSnI 3 -based heterostructure solar cell design, incorporating efficient electron transport layers (ETLs) such as CeO₂, and hole transport layers (HTLs) based on CBTS. Using Density Functional Theory (DFT), the electrical and optical properties of KSnI 3 are characterized and implemented in SCAPS-1D to model the proposed solar cell. The numerical analysis demonstrates that the ITO/CeO 2 /KSnI 3 /CBTS/Ag structure achieves significant photo-conversion efficiency. Key factors such as KSnI 3 layer thickness, series resistance, light conversion efficiency, and operating temperature are investigated to optimize performance. Additionally, the influence of ETL and absorber thickness, defect density, and electron affinity are examined. The simulation results show strong agreement with both numerical and experimental data, yielding an optimized open-circuit voltage (V OC ) of 0.86 V, a short-circuit current density (J SC ) of 21.5 mA/cm 2 , a fill factor (FF) of 86.05%, and an enhanced power conversion efficiency (PCE) that increased from 11.3 to 13.46% at a KSnI 3 thickness of 1.4 μm, under a defect density of 10 14 cm –3 and an electron affinity of 3.44 eV. This comprehensive simulation offers valuable insights that can guide further research on KSnI₃-based solar cells.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-19579-2