Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks

Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of biomedical and health informatics Ročník 19; číslo 4; s. 1451 - 1458
Hlavní autoři: Demirhan, Ayse, Toru, Mustafa, Guler, Inan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2194, 2168-2208, 2168-2208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.
AbstractList Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.
Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.
Author Guler, Inan
Toru, Mustafa
Demirhan, Ayse
Author_xml – sequence: 1
  givenname: Ayse
  surname: Demirhan
  fullname: Demirhan, Ayse
  email: ayseoguz@gazi.edu.tr
  organization: Fac. of Technol., Electron. & Comput. Technol., Ankara, Turkey
– sequence: 2
  givenname: Mustafa
  surname: Toru
  fullname: Toru, Mustafa
  email: mustafa.toru@29mayis.com.tr
  organization: Dept. of Radiol., 29 Mayis Hosp., Ankara, Turkey
– sequence: 3
  givenname: Inan
  surname: Guler
  fullname: Guler, Inan
  email: iguler@gazi.edu.tr
  organization: Fac. of Technol., Electron. & Comput. Technol., Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25265636$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1UREvpD0BIKBIXLrt4nNixj21V2KIKDmzF0fLak9YliYvtgPrvcdhdDj2g-jKW9b3RjN97SQ7GMCIhr4EuAaj68PlsdblkFJolqwXlwJ-RIwZCLhij8mB_B9UckpOU7mg5sjwp8YIcMs4EF7U4It03vBlwzCb7MFahq9bTEGJlRlddOBxMddqH8ab67vNttULT59uHau1TmjDN9Fk0fqyuk58Z8wt7zOmv-AtO0fSl5N8h_kivyPPO9AlPdvWYXH-8WJ-vFldfP12en14tbAM8LzgXVrbWYSPBUuNQddhKKSRrNw5rK1HiBgyVjRWtazuKZsOROqE67jp09TF5v-17H8PPMmPWg08W-96MGKakoQWpmOINewJK1YzTJ6G0LiZAXdB3j9C7MMWx7KxBKNUI1dRQqLc7atoM6PR99IOJD3rvSwHaLWBjSClip63fepTLj_caqJ5DoOcQ6DkEeheCooRHyn3z_2nebDUeEf_xQgGoMs0fz1W6rw
CODEN IJBHA9
CitedBy_id crossref_primary_10_1515_comp_2022_0242
crossref_primary_10_1007_s10278_018_0050_6
crossref_primary_10_1109_JBHI_2021_3109301
crossref_primary_10_1016_j_bspc_2018_05_037
crossref_primary_10_1049_iet_ipr_2019_0942
crossref_primary_10_1155_2022_9289574
crossref_primary_10_3389_fonc_2023_1109786
crossref_primary_10_1002_ima_22376
crossref_primary_10_1016_j_bbe_2019_02_002
crossref_primary_10_1002_ima_22213
crossref_primary_10_1088_1757_899X_1082_1_012011
crossref_primary_10_1007_s11045_018_0603_3
crossref_primary_10_1016_j_asoc_2019_02_036
crossref_primary_10_1002_ima_22459
crossref_primary_10_1002_ima_22735
crossref_primary_10_1515_bmt_2022_0336
crossref_primary_10_1002_mp_15933
crossref_primary_10_1016_j_bspc_2022_104427
crossref_primary_10_3390_e21030318
crossref_primary_10_1007_s11042_020_08898_3
crossref_primary_10_3389_fncom_2020_00010
crossref_primary_10_1007_s12652_020_02429_6
crossref_primary_10_1016_j_bbe_2019_05_007
crossref_primary_10_1016_j_micpro_2023_104814
crossref_primary_10_1007_s13369_022_07169_7
crossref_primary_10_1016_j_matpr_2020_08_718
crossref_primary_10_1088_1742_6596_1577_1_012014
crossref_primary_10_1002_cpe_7016
crossref_primary_10_3390_cancers14184399
crossref_primary_10_1002_ima_22288
crossref_primary_10_1002_ima_22321
crossref_primary_10_1007_s00500_019_04635_7
crossref_primary_10_1002_ima_22202
crossref_primary_10_1007_s00521_019_04679_8
crossref_primary_10_1016_j_procs_2025_03_198
crossref_primary_10_1177_20552076241286140
crossref_primary_10_1109_ACCESS_2018_2883957
crossref_primary_10_1007_s10278_022_00635_6
crossref_primary_10_1016_j_camwa_2019_02_009
crossref_primary_10_1109_TCYB_2020_2994235
crossref_primary_10_1007_s10278_019_00276_2
crossref_primary_10_1007_s11227_022_04420_8
crossref_primary_10_1080_21681163_2022_2092034
crossref_primary_10_3390_sym11050716
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1515_bmt_2018_0244
crossref_primary_10_1007_s11042_019_7324_y
crossref_primary_10_1080_21681163_2019_1579672
crossref_primary_10_1007_s40708_017_0075_5
crossref_primary_10_1016_j_inffus_2024_102892
crossref_primary_10_4103_jmp_jmp_87_21
crossref_primary_10_1007_s11042_021_10538_3
crossref_primary_10_1002_ima_22550
crossref_primary_10_1080_00051144_2020_1760590
crossref_primary_10_1111_exsy_12625
crossref_primary_10_1038_s41598_024_84386_0
crossref_primary_10_1002_ima_22235
crossref_primary_10_3390_computers13100260
crossref_primary_10_4018_IJSI_303578
crossref_primary_10_1088_1742_6596_1947_1_012059
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_1016_j_compbiomed_2023_106538
crossref_primary_10_1007_s11042_021_10969_y
crossref_primary_10_1007_s11042_021_11443_5
crossref_primary_10_1016_j_bbe_2020_05_009
crossref_primary_10_1515_bmt_2018_0175
crossref_primary_10_1016_j_matpr_2021_01_714
crossref_primary_10_1088_1755_1315_248_1_012027
crossref_primary_10_1080_21681163_2022_2083019
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1002_ima_22222
crossref_primary_10_1016_j_compbiomed_2024_108412
crossref_primary_10_1016_j_irbm_2021_06_003
crossref_primary_10_3233_IDA_240069
crossref_primary_10_1002_ima_22223
crossref_primary_10_1016_j_matpr_2020_09_601
crossref_primary_10_1007_s11042_020_10122_1
crossref_primary_10_1007_s12530_022_09443_3
crossref_primary_10_1007_s12652_022_03773_5
crossref_primary_10_1088_2057_1976_ada6ba
crossref_primary_10_1016_j_mri_2019_05_028
crossref_primary_10_1016_j_bbe_2018_12_003
crossref_primary_10_1016_j_bbe_2020_03_003
crossref_primary_10_1109_ACCESS_2025_3605148
Cites_doi 10.1109/42.796284
10.1002/hbm.10062
10.1016/j.imavis.2006.01.025
10.1016/j.neuroimage.2009.03.068
10.1109/42.141646
10.1016/j.neuroimage.2004.06.019
10.1016/j.mri.2006.09.001
10.1016/j.cviu.2010.09.007
10.1006/nimg.2000.0730
10.1016/j.patcog.2006.09.012
10.1016/S0730-725X(98)00181-7
10.1109/TMI.2005.860999
10.1109/34.56205
10.1109/83.469936
10.1109/ICBECS.2010.5462491
10.1016/j.media.2004.06.007
10.1148/radiology.218.2.r01fe44586
10.1016/S1053-8119(01)91441-7
10.1109/TITB.2011.2104376
10.1016/j.engappai.2010.09.008
10.1016/j.neuroimage.2007.05.018
10.1109/TNN.2007.891635
10.1109/23.708336
10.1007/978-3-642-60125-5_19
10.1002/jmri.22661
10.1016/j.amc.2007.10.063
10.1109/TMI.2007.912817
10.1109/TBME.2007.895104
10.1016/j.neuroimage.2009.04.047
10.1109/42.650887
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2014.2360515
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Technology Research Database
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 1458
ExternalDocumentID 3761788941
25265636
10_1109_JBHI_2014_2360515
6911956
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c415t-556c87cde481c0ade9fe7886827bde3c8e8eb1a084c67d7f0eab5e0d69f5dfed3
IEDL.DBID RIE
ISICitedReferencesCount 124
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358620500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sat Sep 27 23:22:42 EDT 2025
Tue Oct 07 10:15:58 EDT 2025
Thu Oct 02 10:54:22 EDT 2025
Sun Jun 29 16:08:55 EDT 2025
Thu Jan 02 22:55:36 EST 2025
Tue Nov 18 21:29:43 EST 2025
Sat Nov 29 04:18:09 EST 2025
Tue Aug 26 16:38:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords self-organizing feature map
Brain magnetic resonance (MR)
image segmentation
stationary wavelet transform (SWT)
learning vector quantization (LVQ)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c415t-556c87cde481c0ade9fe7886827bde3c8e8eb1a084c67d7f0eab5e0d69f5dfed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25265636
PQID 1699469431
PQPubID 85417
PageCount 8
ParticipantIDs pubmed_primary_25265636
proquest_miscellaneous_1718929542
ieee_primary_6911956
proquest_miscellaneous_1700336013
proquest_journals_1699469431
proquest_miscellaneous_1709171802
crossref_citationtrail_10_1109_JBHI_2014_2360515
crossref_primary_10_1109_JBHI_2014_2360515
PublicationCentury 2000
PublicationDate 2015-July
2015-7-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
langleben (ref1) 2000; 41
ref31
ref33
alhoniemi (ref30) 2010
ref11
ref32
ref10
robb (ref27) 2000
ref16
(ref38) 2009
ref18
kohonen (ref19) 2002
straka (ref4) 0
ref24
ref23
ref26
ref25
ref20
menze (ref39) 0
ref22
ref21
demirhan (ref2) 2010; 25
ref28
ref29
ref8
ref7
ref9
ref3
ref6
ref5
khotanlou (ref17) 2008
References_xml – start-page: 1
  year: 0
  ident: ref4
  article-title: 3D watershed transform combined with a probabilistic atlas for medical image segmentation
  publication-title: Proceedings of MIT2003
– ident: ref28
  doi: 10.1109/42.796284
– ident: ref33
  doi: 10.1002/hbm.10062
– ident: ref14
  doi: 10.1016/j.imavis.2006.01.025
– ident: ref31
  doi: 10.1016/j.neuroimage.2009.03.068
– ident: ref20
  doi: 10.1109/42.141646
– ident: ref35
  doi: 10.1016/j.neuroimage.2004.06.019
– ident: ref23
  doi: 10.1016/j.mri.2006.09.001
– ident: ref15
  doi: 10.1016/j.cviu.2010.09.007
– ident: ref32
  doi: 10.1006/nimg.2000.0730
– ident: ref29
  doi: 10.1016/j.patcog.2006.09.012
– ident: ref21
  doi: 10.1016/S0730-725X(98)00181-7
– year: 2010
  ident: ref30
– ident: ref7
  doi: 10.1109/TMI.2005.860999
– ident: ref22
  doi: 10.1109/34.56205
– ident: ref25
  doi: 10.1109/83.469936
– ident: ref24
  doi: 10.1109/ICBECS.2010.5462491
– ident: ref18
  doi: 10.1016/j.media.2004.06.007
– volume: 41
  start-page: 1861
  year: 2000
  ident: ref1
  article-title: PET in differentiation of recurrent brain tumor from radiation injury
  publication-title: J Nucl Med
– ident: ref16
  doi: 10.1148/radiology.218.2.r01fe44586
– ident: ref34
  doi: 10.1016/S1053-8119(01)91441-7
– ident: ref12
  doi: 10.1109/TITB.2011.2104376
– year: 2002
  ident: ref19
  publication-title: The Self-Organizing Maps
– ident: ref26
  doi: 10.1016/j.engappai.2010.09.008
– ident: ref10
  doi: 10.1016/j.neuroimage.2007.05.018
– year: 2009
  ident: ref38
– ident: ref9
  doi: 10.1109/TNN.2007.891635
– ident: ref11
  doi: 10.1109/23.708336
– ident: ref3
  doi: 10.1007/978-3-642-60125-5_19
– volume: 25
  start-page: 285
  year: 2010
  ident: ref2
  article-title: Image segmentation using self-organizing maps and gray level co-occurrence matrices
  publication-title: J Fac Eng Arch Gazi Univ
– year: 2000
  ident: ref27
  publication-title: Biomedical Imaging Visualization and Analysis
– year: 0
  ident: ref39
– year: 2008
  ident: ref17
  article-title: 3D brain tumors and internal brain structures segmentation in MR images
– ident: ref37
  doi: 10.1002/jmri.22661
– ident: ref13
  doi: 10.1016/j.amc.2007.10.063
– ident: ref6
  doi: 10.1109/TMI.2007.912817
– ident: ref5
  doi: 10.1109/TBME.2007.895104
– ident: ref36
  doi: 10.1016/j.neuroimage.2009.04.047
– ident: ref8
  doi: 10.1109/42.650887
SSID ssj0000816896
Score 2.4722764
Snippet Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1451
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Brain
Brain - pathology
Brain MR
Brain Neoplasms - pathology
Databases, Factual
Edema
Edema - pathology
Feature extraction
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Learning
learning vector quantization
Magnetic Resonance Imaging - methods
Medical services
Neural Networks, Computer
Segmentation
self-organizing feature map
stationary wavelet transform
Training
Tumors
Vectors
Wavelet Analysis
Wavelet transforms
Title Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks
URI https://ieeexplore.ieee.org/document/6911956
https://www.ncbi.nlm.nih.gov/pubmed/25265636
https://www.proquest.com/docview/1699469431
https://www.proquest.com/docview/1700336013
https://www.proquest.com/docview/1709171802
https://www.proquest.com/docview/1718929542
Volume 19
WOSCitedRecordID wos000358620500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJceBXKQqmMxAmR1nk59rFFrQqCFRIL3VvktcelUjdBmywS_x6P4w0XWImbpYwVJ5_Hrxl_H8BrZVMtK-tHP6ttUrhskUiZL5JCqsoa6zQPBKbfPlbTqZzP1ecdeDvehUHEkHyGx1QMsXzbmjUdlZ0IRQRlYhd2q0oMd7XG85QgIBHkuDJfSLwjFjGImXJ18uHs8j3lcRXHWS5I1oRIgIkZXgRu5j8zUpBY-fdqM8w6Fw_-r70P4X5cXbLToTs8gh1sHsPdTzF-vg_uC14v422jhrWOzdbLdsV0Y9m5xaVmp7dtc82ubvrvbLig9IvNAjQdWZ-RngQLWQbsSpNkRd-FykTx4d87HXLKuyfw9eJ89u4yiUoLifETeJ-UpTCyMhYLmRquLSqHfm8sZFYtLOZGovRjuuayMMID6zjqRYncCuVK69DmT2GvaRt8BszoVCjkQmNmisw5lbvKpcp5eFJtjJkA3_zt2kQaclLDuK3DdoSrmrCqCas6YjWBN2OVHwMHxzbjfQJiNIwYTOBwA2kdvbSrfUtVIZRfQ03g1fjY-xcFTXSD7drbVCR357et-VYbv-slLr1tNqlUFFT1NgdDlxrbuOmJz__e9hdwz39hOSQJH8Jev1rjS7hjfvY33erIO8NcHgVn-A2igwPH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgoALr0JZKGAkToi0eTr2sUWttrBdIbHQ3iKvPS6Vukm1ySLx7_E43nCBlbhZylhx8vk9M98H8E6aRInSuNnPKBPlNp1HQmTzKBeyNNpYFXsC0--TcjoVFxfyyxZ8GHJhENEHn-E-Fb0v3zR6RVdlB1wSQRm_BbdJOStkaw03Kl5Cwgtypa4QuaGYBzdmEsuDT0fjU4rkyvfTjJOwCdEAEzc89-zMf9YkL7Ly7_2mX3dOHv5fix_Bg7C_ZId9h3gMW1g_gbtnwYO-A_YrXi5CvlHNGstmq0WzZKo27NjgQrHD66a-ZOdX3Q_Wpyj9YjMPTkvWR6QowXycATtXJFrRtb4ykXy49077qPL2KXw7OZ59HEdBayHSbgnvoqLgWpTaYC4SHSuD0qI7HXORlnODmRYo3KyuYpFr7qC1Map5gbHh0hbGosmewXbd1PgcmFYJlxhzhanOU2tlZkubSOvgSZTWegTx-m9XOhCRkx7GdeUPJLGsCKuKsKoCViN4P1S56Vk4NhnvEBCDYcBgBHtrSKswTtvKtVTmXLpd1AjeDo_dCCO3iaqxWTmbkgTv3ME122jjzr3EprfJJhGS3KrOZrfvUkMb1z3xxd_b_gbujWdnk2pyOv38Eu67ry36kOE92O6WK3wFd_TP7qpdvvZD4jcs7AYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+Tumor+and+Edema+Along+With+Healthy+Tissues+of+Brain+Using+Wavelets+and+Neural+Networks&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Demirhan%2C+Ayse&rft.au=Toru%2C+Mustafa&rft.au=Guler%2C+Inan&rft.date=2015-07-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=19&rft.issue=4&rft.spage=1451&rft.epage=1458&rft_id=info:doi/10.1109%2FJBHI.2014.2360515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2014_2360515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon