Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks
Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cer...
Uložené v:
| Vydané v: | IEEE journal of biomedical and health informatics Ročník 19; číslo 4; s. 1451 - 1458 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.07.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema. |
|---|---|
| AbstractList | Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema. Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema. |
| Author | Guler, Inan Toru, Mustafa Demirhan, Ayse |
| Author_xml | – sequence: 1 givenname: Ayse surname: Demirhan fullname: Demirhan, Ayse email: ayseoguz@gazi.edu.tr organization: Fac. of Technol., Electron. & Comput. Technol., Ankara, Turkey – sequence: 2 givenname: Mustafa surname: Toru fullname: Toru, Mustafa email: mustafa.toru@29mayis.com.tr organization: Dept. of Radiol., 29 Mayis Hosp., Ankara, Turkey – sequence: 3 givenname: Inan surname: Guler fullname: Guler, Inan email: iguler@gazi.edu.tr organization: Fac. of Technol., Electron. & Comput. Technol., Ankara, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25265636$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFv1DAQhS1UREvpD0BIKBIXLrt4nNixj21V2KIKDmzF0fLak9YliYvtgPrvcdhdDj2g-jKW9b3RjN97SQ7GMCIhr4EuAaj68PlsdblkFJolqwXlwJ-RIwZCLhij8mB_B9UckpOU7mg5sjwp8YIcMs4EF7U4It03vBlwzCb7MFahq9bTEGJlRlddOBxMddqH8ab67vNttULT59uHau1TmjDN9Fk0fqyuk58Z8wt7zOmv-AtO0fSl5N8h_kivyPPO9AlPdvWYXH-8WJ-vFldfP12en14tbAM8LzgXVrbWYSPBUuNQddhKKSRrNw5rK1HiBgyVjRWtazuKZsOROqE67jp09TF5v-17H8PPMmPWg08W-96MGKakoQWpmOINewJK1YzTJ6G0LiZAXdB3j9C7MMWx7KxBKNUI1dRQqLc7atoM6PR99IOJD3rvSwHaLWBjSClip63fepTLj_caqJ5DoOcQ6DkEeheCooRHyn3z_2nebDUeEf_xQgGoMs0fz1W6rw |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1515_comp_2022_0242 crossref_primary_10_1007_s10278_018_0050_6 crossref_primary_10_1109_JBHI_2021_3109301 crossref_primary_10_1016_j_bspc_2018_05_037 crossref_primary_10_1049_iet_ipr_2019_0942 crossref_primary_10_1155_2022_9289574 crossref_primary_10_3389_fonc_2023_1109786 crossref_primary_10_1002_ima_22376 crossref_primary_10_1016_j_bbe_2019_02_002 crossref_primary_10_1002_ima_22213 crossref_primary_10_1088_1757_899X_1082_1_012011 crossref_primary_10_1007_s11045_018_0603_3 crossref_primary_10_1016_j_asoc_2019_02_036 crossref_primary_10_1002_ima_22459 crossref_primary_10_1002_ima_22735 crossref_primary_10_1515_bmt_2022_0336 crossref_primary_10_1002_mp_15933 crossref_primary_10_1016_j_bspc_2022_104427 crossref_primary_10_3390_e21030318 crossref_primary_10_1007_s11042_020_08898_3 crossref_primary_10_3389_fncom_2020_00010 crossref_primary_10_1007_s12652_020_02429_6 crossref_primary_10_1016_j_bbe_2019_05_007 crossref_primary_10_1016_j_micpro_2023_104814 crossref_primary_10_1007_s13369_022_07169_7 crossref_primary_10_1016_j_matpr_2020_08_718 crossref_primary_10_1088_1742_6596_1577_1_012014 crossref_primary_10_1002_cpe_7016 crossref_primary_10_3390_cancers14184399 crossref_primary_10_1002_ima_22288 crossref_primary_10_1002_ima_22321 crossref_primary_10_1007_s00500_019_04635_7 crossref_primary_10_1002_ima_22202 crossref_primary_10_1007_s00521_019_04679_8 crossref_primary_10_1016_j_procs_2025_03_198 crossref_primary_10_1177_20552076241286140 crossref_primary_10_1109_ACCESS_2018_2883957 crossref_primary_10_1007_s10278_022_00635_6 crossref_primary_10_1016_j_camwa_2019_02_009 crossref_primary_10_1109_TCYB_2020_2994235 crossref_primary_10_1007_s10278_019_00276_2 crossref_primary_10_1007_s11227_022_04420_8 crossref_primary_10_1080_21681163_2022_2092034 crossref_primary_10_3390_sym11050716 crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_1515_bmt_2018_0244 crossref_primary_10_1007_s11042_019_7324_y crossref_primary_10_1080_21681163_2019_1579672 crossref_primary_10_1007_s40708_017_0075_5 crossref_primary_10_1016_j_inffus_2024_102892 crossref_primary_10_4103_jmp_jmp_87_21 crossref_primary_10_1007_s11042_021_10538_3 crossref_primary_10_1002_ima_22550 crossref_primary_10_1080_00051144_2020_1760590 crossref_primary_10_1111_exsy_12625 crossref_primary_10_1038_s41598_024_84386_0 crossref_primary_10_1002_ima_22235 crossref_primary_10_3390_computers13100260 crossref_primary_10_4018_IJSI_303578 crossref_primary_10_1088_1742_6596_1947_1_012059 crossref_primary_10_1007_s11831_022_09758_z crossref_primary_10_1016_j_compbiomed_2023_106538 crossref_primary_10_1007_s11042_021_10969_y crossref_primary_10_1007_s11042_021_11443_5 crossref_primary_10_1016_j_bbe_2020_05_009 crossref_primary_10_1515_bmt_2018_0175 crossref_primary_10_1016_j_matpr_2021_01_714 crossref_primary_10_1088_1755_1315_248_1_012027 crossref_primary_10_1080_21681163_2022_2083019 crossref_primary_10_1007_s13198_024_02422_8 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1002_ima_22222 crossref_primary_10_1016_j_compbiomed_2024_108412 crossref_primary_10_1016_j_irbm_2021_06_003 crossref_primary_10_3233_IDA_240069 crossref_primary_10_1002_ima_22223 crossref_primary_10_1016_j_matpr_2020_09_601 crossref_primary_10_1007_s11042_020_10122_1 crossref_primary_10_1007_s12530_022_09443_3 crossref_primary_10_1007_s12652_022_03773_5 crossref_primary_10_1088_2057_1976_ada6ba crossref_primary_10_1016_j_mri_2019_05_028 crossref_primary_10_1016_j_bbe_2018_12_003 crossref_primary_10_1016_j_bbe_2020_03_003 crossref_primary_10_1109_ACCESS_2025_3605148 |
| Cites_doi | 10.1109/42.796284 10.1002/hbm.10062 10.1016/j.imavis.2006.01.025 10.1016/j.neuroimage.2009.03.068 10.1109/42.141646 10.1016/j.neuroimage.2004.06.019 10.1016/j.mri.2006.09.001 10.1016/j.cviu.2010.09.007 10.1006/nimg.2000.0730 10.1016/j.patcog.2006.09.012 10.1016/S0730-725X(98)00181-7 10.1109/TMI.2005.860999 10.1109/34.56205 10.1109/83.469936 10.1109/ICBECS.2010.5462491 10.1016/j.media.2004.06.007 10.1148/radiology.218.2.r01fe44586 10.1016/S1053-8119(01)91441-7 10.1109/TITB.2011.2104376 10.1016/j.engappai.2010.09.008 10.1016/j.neuroimage.2007.05.018 10.1109/TNN.2007.891635 10.1109/23.708336 10.1007/978-3-642-60125-5_19 10.1002/jmri.22661 10.1016/j.amc.2007.10.063 10.1109/TMI.2007.912817 10.1109/TBME.2007.895104 10.1016/j.neuroimage.2009.04.047 10.1109/42.650887 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2014.2360515 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Technology Research Database MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 1458 |
| ExternalDocumentID | 3761788941 25265636 10_1109_JBHI_2014_2360515 6911956 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c415t-556c87cde481c0ade9fe7886827bde3c8e8eb1a084c67d7f0eab5e0d69f5dfed3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358620500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sat Sep 27 23:22:42 EDT 2025 Tue Oct 07 10:15:58 EDT 2025 Thu Oct 02 10:54:22 EDT 2025 Sun Jun 29 16:08:55 EDT 2025 Thu Jan 02 22:55:36 EST 2025 Tue Nov 18 21:29:43 EST 2025 Sat Nov 29 04:18:09 EST 2025 Tue Aug 26 16:38:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | self-organizing feature map Brain magnetic resonance (MR) image segmentation stationary wavelet transform (SWT) learning vector quantization (LVQ) |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c415t-556c87cde481c0ade9fe7886827bde3c8e8eb1a084c67d7f0eab5e0d69f5dfed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 25265636 |
| PQID | 1699469431 |
| PQPubID | 85417 |
| PageCount | 8 |
| ParticipantIDs | pubmed_primary_25265636 proquest_miscellaneous_1718929542 ieee_primary_6911956 proquest_miscellaneous_1700336013 proquest_journals_1699469431 proquest_miscellaneous_1709171802 crossref_citationtrail_10_1109_JBHI_2014_2360515 crossref_primary_10_1109_JBHI_2014_2360515 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-July 2015-7-00 2015-Jul 20150701 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-July |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2015 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 langleben (ref1) 2000; 41 ref31 ref33 alhoniemi (ref30) 2010 ref11 ref32 ref10 robb (ref27) 2000 ref16 (ref38) 2009 ref18 kohonen (ref19) 2002 straka (ref4) 0 ref24 ref23 ref26 ref25 ref20 menze (ref39) 0 ref22 ref21 demirhan (ref2) 2010; 25 ref28 ref29 ref8 ref7 ref9 ref3 ref6 ref5 khotanlou (ref17) 2008 |
| References_xml | – start-page: 1 year: 0 ident: ref4 article-title: 3D watershed transform combined with a probabilistic atlas for medical image segmentation publication-title: Proceedings of MIT2003 – ident: ref28 doi: 10.1109/42.796284 – ident: ref33 doi: 10.1002/hbm.10062 – ident: ref14 doi: 10.1016/j.imavis.2006.01.025 – ident: ref31 doi: 10.1016/j.neuroimage.2009.03.068 – ident: ref20 doi: 10.1109/42.141646 – ident: ref35 doi: 10.1016/j.neuroimage.2004.06.019 – ident: ref23 doi: 10.1016/j.mri.2006.09.001 – ident: ref15 doi: 10.1016/j.cviu.2010.09.007 – ident: ref32 doi: 10.1006/nimg.2000.0730 – ident: ref29 doi: 10.1016/j.patcog.2006.09.012 – ident: ref21 doi: 10.1016/S0730-725X(98)00181-7 – year: 2010 ident: ref30 – ident: ref7 doi: 10.1109/TMI.2005.860999 – ident: ref22 doi: 10.1109/34.56205 – ident: ref25 doi: 10.1109/83.469936 – ident: ref24 doi: 10.1109/ICBECS.2010.5462491 – ident: ref18 doi: 10.1016/j.media.2004.06.007 – volume: 41 start-page: 1861 year: 2000 ident: ref1 article-title: PET in differentiation of recurrent brain tumor from radiation injury publication-title: J Nucl Med – ident: ref16 doi: 10.1148/radiology.218.2.r01fe44586 – ident: ref34 doi: 10.1016/S1053-8119(01)91441-7 – ident: ref12 doi: 10.1109/TITB.2011.2104376 – year: 2002 ident: ref19 publication-title: The Self-Organizing Maps – ident: ref26 doi: 10.1016/j.engappai.2010.09.008 – ident: ref10 doi: 10.1016/j.neuroimage.2007.05.018 – year: 2009 ident: ref38 – ident: ref9 doi: 10.1109/TNN.2007.891635 – ident: ref11 doi: 10.1109/23.708336 – ident: ref3 doi: 10.1007/978-3-642-60125-5_19 – volume: 25 start-page: 285 year: 2010 ident: ref2 article-title: Image segmentation using self-organizing maps and gray level co-occurrence matrices publication-title: J Fac Eng Arch Gazi Univ – year: 2000 ident: ref27 publication-title: Biomedical Imaging Visualization and Analysis – year: 0 ident: ref39 – year: 2008 ident: ref17 article-title: 3D brain tumors and internal brain structures segmentation in MR images – ident: ref37 doi: 10.1002/jmri.22661 – ident: ref13 doi: 10.1016/j.amc.2007.10.063 – ident: ref6 doi: 10.1109/TMI.2007.912817 – ident: ref5 doi: 10.1109/TBME.2007.895104 – ident: ref36 doi: 10.1016/j.neuroimage.2009.04.047 – ident: ref8 doi: 10.1109/42.650887 |
| SSID | ssj0000816896 |
| Score | 2.4722764 |
| Snippet | Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1451 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Brain Brain - pathology Brain MR Brain Neoplasms - pathology Databases, Factual Edema Edema - pathology Feature extraction Humans Image Processing, Computer-Assisted - methods Image segmentation Learning learning vector quantization Magnetic Resonance Imaging - methods Medical services Neural Networks, Computer Segmentation self-organizing feature map stationary wavelet transform Training Tumors Vectors Wavelet Analysis Wavelet transforms |
| Title | Segmentation of Tumor and Edema Along With Healthy Tissues of Brain Using Wavelets and Neural Networks |
| URI | https://ieeexplore.ieee.org/document/6911956 https://www.ncbi.nlm.nih.gov/pubmed/25265636 https://www.proquest.com/docview/1699469431 https://www.proquest.com/docview/1700336013 https://www.proquest.com/docview/1709171802 https://www.proquest.com/docview/1718929542 |
| Volume | 19 |
| WOSCitedRecordID | wos000358620500033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELa2CSFeYDAYhW0yEk-IbE7r-MfjNm0aCCokCutb5NjnMWlNUJMi8d_jc9zwwirxFilnxcn5cmff3fcR8pZzz4NfGWfee51ha2dmvM0zJyRUylS5iej83z_J6VTN5_rLFnk_9MIAQCw-g2O8jLl819gVHpWdCI0AZWKbbEsp-l6t4TwlEkhEOq5xuMiCIfKUxMyZPvl4dvUB67j48XgikNYEQYARGV5EbOa_HilSrNwfbUavc_nk_-a7Sx6n6JKe9svhKdmC-hl5-Dnlz_eI_wo3i9RtVNPG09lq0SypqR29cLAw9PSuqW_o9W33g_YNSr_pLKqmRekz5JOgscqAXhukrOjaOBghPsJzp31NefucfLu8mJ1fZYlpIbPBgXdZUQirpHXAVW6ZcaA9hL2xUGNZOZhYBSr80w1T3ArppGdgqgKYE9oXzoObvCA7dVPDS0JFAZa7EBXluuKKVdox8I45DcqowtgRYeuvXdoEQ45sGHdl3I4wXaKuStRVmXQ1Iu-GIT97DI5NwnuoiEEw6WBEDtYqLZOVtmUutOZChxhqRN4Mt4N9YdLE1NCsgoxEuruwbZ1slAm7XsTS2ySTK41J1SCz3y-pYY7rlfjq33N_TR6FNyz6IuEDstMtV3BIHthf3W27PArGMFdH0Rj-AGY6A1Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGQMDL-DEYZQOMxBMim9M6jv24oU0ddBUShe0tcuzzmLQmU5Mi8d_jc9zsZVTiLVLOipPz5c6-u-8j5APnjnu_MkyccyrB1s5EO5MmVuRQSl2mOqDz_5zk06m8uFDfNsinvhcGAELxGezjZcjl29os8ajsQCgEKBP3yH1kzordWv2JSqCQCIRcQ3-ReFPkMY2ZMnXw5Wh8ipVcfH84EkhsgjDAiA0vAjrzrU8KJCv_jjeD3zl58n8zfkq2YnxJD7sF8YxsQPWcPDyLGfRt4r7D5Tz2G1W0dnS2nNcLqitLjy3MNT28rqtLen7V_qJdi9IfOgvKaVD6CBklaKgzoOcaSSvaJgxGkA__3GlXVd68ID9Ojmefx0nkWkiMd-FtkmXCyNxY4DI1TFtQDvzuWMhhXloYGQnS_9U1k9yI3OaOgS4zYFYol1kHdvSSbFZ1Ba8IFRkYbn1clKqSS1Yqy8BZZhVILTNtBoStvnZhIhA58mFcF2FDwlSBuipQV0XU1YB87IfcdCgc64S3URG9YNTBgOytVFpEO22KVCjFhfJR1IC87297C8O0ia6gXnqZHAnv_MZ1tFbG73sRTW-dTCoVplW9zE63pPo5rlbi67vn_o48Gs_OJsXkdPp1lzz2b5t1JcN7ZLNdLOENeWB-t1fN4m0wib_tXAW3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+tumor+and+edema+along+with+healthy+tissues+of+brain+using+wavelets+and+neural+networks&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Demirhan%2C+Ay%C5%9Fe&rft.au=Toru%2C+Mustafa&rft.au=Guler%2C+Inan&rft.date=2015-07-01&rft.eissn=2168-2208&rft.volume=19&rft.issue=4&rft.spage=1451&rft_id=info:doi/10.1109%2FJBHI.2014.2360515&rft_id=info%3Apmid%2F25265636&rft.externalDocID=25265636 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |