Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids

As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditiona...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 25; no. 17; p. 5226
Main Authors: Zeng, Haiyong, Huang, Yuanyan, Zhan, Kaijie, Yu, Zichao, Zhu, Hongyan, Li, Fangyan
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22.08.2025
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25175226