On the computational complexity of membership problems for the completely positive cone and its dual

Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi (Math. Program. 39(2):117–129, 1987 ) that the strong membership problem for the copositive cone, that is deciding whether or not a given matrix is in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 57; číslo 2; s. 403 - 415
Hlavní autoři: Dickinson, Peter J. C., Gijben, Luuk
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2014
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Copositive programming has become a useful tool in dealing with all sorts of optimisation problems. It has however been shown by Murty and Kabadi (Math. Program. 39(2):117–129, 1987 ) that the strong membership problem for the copositive cone, that is deciding whether or not a given matrix is in the copositive cone, is a co-NP-complete problem. From this it has long been assumed that this implies that the question of whether or not the strong membership problem for the dual of the copositive cone, the completely positive cone, is also an NP-hard problem. However, the technical details for this have not previously been looked at to confirm that this is true. In this paper it is proven that the strong membership problem for the completely positive cone is indeed NP-hard. Furthermore, it is shown that even the weak membership problems for both of these cones are NP-hard. We also present an alternative proof of the NP-hardness of the strong membership problem for the copositive cone.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-013-9594-z