Deep residual inception encoder‐decoder network for amyloid PET harmonization

Introduction Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy. Method A Residual Incept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia Jg. 18; H. 12; S. 2448 - 2457
Hauptverfasser: Shah, Jay, Gao, Fei, Li, Baoxin, Ghisays, Valentina, Luo, Ji, Chen, Yinghua, Lee, Wendy, Zhou, Yuxiang, Benzinger, Tammie L.S., Reiman, Eric M., Chen, Kewei, Su, Yi, Wu, Teresa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.12.2022
Schlagworte:
ISSN:1552-5260, 1552-5279, 1552-5279
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Introduction Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy. Method A Residual Inception Encoder‐Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound‐B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10‐fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects. Results Significantly stronger between‐tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel‐wise measurements in the training cohort and the external testing cohort. Discussion We proposed and validated a novel encoder‐decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.
AbstractList Introduction Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy. Method A Residual Inception Encoder‐Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound‐B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10‐fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects. Results Significantly stronger between‐tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel‐wise measurements in the training cohort and the external testing cohort. Discussion We proposed and validated a novel encoder‐decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.
Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy. A Residual Inception Encoder-Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound-B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10-fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects. Significantly stronger between-tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel-wise measurements in the training cohort and the external testing cohort. We proposed and validated a novel encoder-decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.
Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy.INTRODUCTIONMultiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and quantitative analysis. We accordingly developed and validated a deep learning model as a harmonization strategy.A Residual Inception Encoder-Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound-B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10-fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects.METHODA Residual Inception Encoder-Decoder Neural Network was developed to harmonize images between amyloid PET image pairs made with Pittsburgh Compound-B and florbetapir tracers. The model was trained using a dataset with 92 subjects with 10-fold cross validation and its generalizability was further examined using an independent external dataset of 46 subjects.Significantly stronger between-tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel-wise measurements in the training cohort and the external testing cohort.RESULTSSignificantly stronger between-tracer correlations (P < .001) were observed after harmonization for both global amyloid burden indices and voxel-wise measurements in the training cohort and the external testing cohort.We proposed and validated a novel encoder-decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.DISCUSSIONWe proposed and validated a novel encoder-decoder based deep model to harmonize amyloid PET imaging data from different tracers. Further investigation is ongoing to improve the model and apply to additional tracers.
Author Su, Yi
Ghisays, Valentina
Shah, Jay
Luo, Ji
Chen, Kewei
Benzinger, Tammie L.S.
Gao, Fei
Chen, Yinghua
Reiman, Eric M.
Wu, Teresa
Zhou, Yuxiang
Li, Baoxin
Lee, Wendy
Author_xml – sequence: 1
  givenname: Jay
  orcidid: 0000-0002-3617-2395
  surname: Shah
  fullname: Shah, Jay
  organization: Arizona State University
– sequence: 2
  givenname: Fei
  surname: Gao
  fullname: Gao, Fei
  organization: Arizona State University
– sequence: 3
  givenname: Baoxin
  surname: Li
  fullname: Li, Baoxin
  organization: Arizona State University
– sequence: 4
  givenname: Valentina
  surname: Ghisays
  fullname: Ghisays, Valentina
  organization: Banner Alzheimer's Institute
– sequence: 5
  givenname: Ji
  surname: Luo
  fullname: Luo, Ji
  organization: Banner Alzheimer's Institute
– sequence: 6
  givenname: Yinghua
  surname: Chen
  fullname: Chen, Yinghua
  organization: Banner Alzheimer's Institute
– sequence: 7
  givenname: Wendy
  surname: Lee
  fullname: Lee, Wendy
  organization: Banner Alzheimer's Institute
– sequence: 8
  givenname: Yuxiang
  surname: Zhou
  fullname: Zhou, Yuxiang
  organization: Mayo Clinic at Arizona
– sequence: 9
  givenname: Tammie L.S.
  surname: Benzinger
  fullname: Benzinger, Tammie L.S.
  organization: Washington University School of Medicine in St. Louis
– sequence: 10
  givenname: Eric M.
  surname: Reiman
  fullname: Reiman, Eric M.
  organization: Banner Alzheimer's Institute
– sequence: 11
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
  organization: Banner Alzheimer's Institute
– sequence: 12
  givenname: Yi
  surname: Su
  fullname: Su, Yi
  email: yi.su@bannerhealth.com
  organization: Banner Alzheimer's Institute
– sequence: 13
  givenname: Teresa
  surname: Wu
  fullname: Wu, Teresa
  organization: Arizona State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35142053$$D View this record in MEDLINE/PubMed
BookMark eNo9kLtOwzAUhi1URC8w8ALII0ta27ETZ6xKuUiVytCJxXKcE2FI4uA0qtqJR-AZeRLSC53Or_N_5wzfEPUqVwFCt5SMKSFsoovdmDIR8Qs0oEKwQLA46Z1zRPpo2DQfhHAiqbhC_VBQzogIB2j5AFBjD43NWl1gWxmo19ZVGCrjMvC_3z8ZHBKuYL1x_hPnzmNdbgtnM_w6X-F37UtX2Z3e312jy1wXDdyc5gitHuer2XOwWD69zKaLwHAqeKAhYbmUaUikySIBmjMZpiwzOjaUyzzRzIBJMmby0KRRro3kPKEiyaXg3W6E7o9va---WmjWqrSNgaLQFbi2USxiMY9DFvEOvTuhbVpCpmpvS-236t9BB0yOwMYWsD33lKi9XNXJVQe5arp4O4TwDxXNb7M
CitedBy_id crossref_primary_10_1111_ejn_16332
crossref_primary_10_3390_life14121580
crossref_primary_10_1007_s43657_022_00068_9
crossref_primary_10_1007_s00259_023_06209_0
crossref_primary_10_3233_JAD_221261
crossref_primary_10_1002_alz_13677
crossref_primary_10_1002_dad2_12436
crossref_primary_10_1002_dad2_70165
crossref_primary_10_1002_jmri_29070
crossref_primary_10_1016_j_neuroimage_2022_119527
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of Alzheimer's Association
2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of Alzheimer's Association
– notice: 2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
DBID 24P
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/alz.12564
DatabaseName Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage 2457
ExternalDocumentID 35142053
ALZ12564
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Health/National Institute of Biomedical Imaging and Bioengineering
  funderid: R01EB009352
– fundername: Arizona Department of Health Services (ADHS) and the State of Arizona, ADHS
  funderid: CTR040636
– fundername: National Institute of Health/National Institute on Aging
  funderid: R01AG031581; R01AG069453; P30AG019610; P50AG00561; P01AG026276; P01AG003991; R01AG043434
– fundername: National Institute of Health/National Institute of Neurological Disorders and Stroke
  funderid: P30NS098577
– fundername: NIA NIH HHS
  grantid: P30 AG072980
– fundername: NIBIB NIH HHS
  grantid: R01 EB009352
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIA NIH HHS
  grantid: RF1 AG073424
– fundername: NIH HHS
  grantid: S10 OD025214
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NCATS NIH HHS
  grantid: UL1 TR000448
– fundername: NIA NIH HHS
  grantid: P01 AG026276
– fundername: NIA NIH HHS
  grantid: R01 AG043434
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
AAMMB
AAYWO
ACVFH
ADCNI
AEFGJ
AEUPX
AFPUW
AGHNM
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
7X8
~HD
ID FETCH-LOGICAL-c4154-ae92f88b308cd65ea4283b2dca7c148f9a2cec9d2cf3cb6fac8449159f854cf3
IEDL.DBID 24P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000753468900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-5260
1552-5279
IngestDate Sun Sep 28 12:34:57 EDT 2025
Sun Jul 20 01:30:40 EDT 2025
Wed Jan 22 16:21:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Alzheimer's disease
Centiloid
amyloid PET
Language English
License Attribution-NonCommercial
2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4154-ae92f88b308cd65ea4283b2dca7c148f9a2cec9d2cf3cb6fac8449159f854cf3
Notes Yi Su and Teresa Wu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3617-2395
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.12564
PMID 35142053
PQID 2627473264
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2627473264
pubmed_primary_35142053
wiley_primary_10_1002_alz_12564_ALZ12564
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Alzheimer's & dementia
PublicationTitleAlternate Alzheimers Dement
PublicationYear 2022
References 2019; 9
2018; 286
2009; 46
2019; 5
1991; 12
2020; 63
2019; 11
2015; 521
2015; 11
2019; 15
1991; 82
2020; 16
2008; 15
2013; 169
2011; 10
2020; 79
2020; 12
2015; 107
2012; 367
2013; 8
2012; 11
2012; 53
2004; 55
2018; 19
2012; 2
2006; 67
2015; 313
2013; 54
2009; 50
2013; 34
2003; 46
2019
2019; 179
2011; 68
2020; 24
2015
2011; 69
2014; 17
2014; 6
2010; 51
2018; 14
References_xml – volume: 17
  start-page: 305
  year: 2014
  end-page: 312
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: Med Image Comput Comput Assist Interv
– start-page: 234
  year: 2015
  end-page: 241
– volume: 50
  start-page: 1251
  year: 2009
  end-page: 1259
  article-title: Phase 1 study of the Pittsburgh compound B derivative 18F‐flutemetamol in healthy volunteers and patients with probable Alzheimer disease
  publication-title: J Nucl Med
– volume: 55
  start-page: 306
  year: 2004
  end-page: 319
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound‐B
  publication-title: Ann Neurol
– volume: 46
  start-page: 154
  year: 2009
  end-page: 159
  article-title: Reducing between scanner differences in multi‐center PET studies
  publication-title: Neuroimage
– volume: 313
  start-page: 1924
  year: 2015
  end-page: 1938
  article-title: Prevalence of cerebral amyloid pathology in persons without dementia: a meta‐analysis
  publication-title: JAMA
– volume: 169
  start-page: 737
  year: 2013
  end-page: 743
  article-title: Preclinical trials in autosomal dominant AD: implementation of the DIAN‐TU trial
  publication-title: Rev Neurol (Paris)
– volume: 67
  start-page: 446
  issue: 3
  year: 2006
  end-page: 452
  article-title: [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease
  publication-title: Neurology
– volume: 11
  start-page: 180
  year: 2019
  end-page: 190
  article-title: Comparison of Pittsburgh compound B and florbetapir in cross‐sectional and longitudinal studies
  publication-title: Alzheimers Dement (Amst)
– volume: 6
  year: 2014
  article-title: The A4 study: stopping AD before symptoms begin?
  publication-title: Sci Transl Med
– start-page: 2242
  end-page: 2251
– volume: 10
  start-page: 424
  issue: 5
  year: 2011
  end-page: 435
  article-title: Cerebral amyloid‐β PET with florbetaben (18F) in patients with Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study
  publication-title: Lancet Neurol
– volume: 34
  start-page: 457
  year: 2013
  end-page: 468
  article-title: Early clinical PET imaging results with the novel PHF‐tau radioligand [F‐18]‐T807
  publication-title: J Alzheimers Dis
– volume: 9
  start-page: 1952
  year: 2019
  article-title: For Alzheimer's disease neuroimaging I. Predicting Alzheimer's disease progression using multi‐modal deep learning approach
  publication-title: Sci Rep
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  end-page: 144
  article-title: Generative adversarial networks
  publication-title: Communications of the ACM
– volume: 15
  start-page: 1376
  year: 2008
  end-page: 1389
  article-title: Automated (11)C‐PiB standardized uptake value ratio
  publication-title: Acad Radiol
– volume: 16
  start-page: 1023
  year: 2020
  end-page: 1030
  article-title: Baseline demographic, clinical, and cognitive characteristics of the Alzheimer's Prevention Initiative (API) Autosomal‐Dominant Alzheimer's Disease Colombia Trial
  publication-title: Alzheimers Dement
– volume: 14
  start-page: 1565
  issue: 12
  year: 2018
  end-page: 1571
  article-title: Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the Centiloid scale
  publication-title: Alzheimers Dement
– volume: 367
  start-page: 795
  year: 2012
  end-page: 804
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer's disease
  publication-title: N Engl J Med
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  article-title: NIA‐AA research framework: toward a biological definition of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 68
  start-page: 1404
  year: 2011
  end-page: 1411
  article-title: Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease
  publication-title: Arch Neurol
– volume: 46
  start-page: 2740
  year: 2003
  end-page: 2754
  article-title: Synthesis and evaluation of 11C‐labeled 6‐substituted 2‐arylbenzothiazoles as amyloid imaging agents
  publication-title: J Med Chem
– volume: 11
  start-page: 757
  year: 2015
  end-page: 771
  article-title: The Alzheimer's Disease Neuroimaging Initiative 2 PET Core: 2015
  publication-title: Alzheimers Dement
– volume: 15
  start-page: 807
  year: 2019
  end-page: 816
  article-title: Comparison of F‐florbetaben quantification results using the standard Centiloid, MR‐based, and MR‐less CapAIBL approaches: validation against histopathology
  publication-title: Alzheimers Dement
– volume: 5
  start-page: 216
  year: 2019
  end-page: 227
  article-title: The Alzheimer's Prevention Initiative Generation Program: study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer's disease
  publication-title: Alzheimers Dement (N Y)
– volume: 179
  start-page: 312
  issue: 2
  year: 2019
  end-page: 339
  article-title: Alzheimer disease: an update on pathobiology and treatment strategies
  publication-title: Cell
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 51
  start-page: 913
  year: 2010
  end-page: 920
  article-title: In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F‐AV‐45 (florbetapir [corrected] F 18)
  publication-title: J Nucl Med
– volume: 11
  start-page: 1057
  issue: 12
  year: 2012
  end-page: 1065
  article-title: Florbetapir PET analysis of amyloid‐β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross‐sectional study
  publication-title: Lancet Neurol
– volume: 19
  start-page: 406
  year: 2018
  end-page: 416
  article-title: Utilizing the Centiloid scale in cross‐sectional and longitudinal PiB PET studies
  publication-title: Neuroimage Clin
– volume: 69
  start-page: 181
  year: 2011
  end-page: 192
  article-title: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease
  publication-title: Ann Neurol
– volume: 8
  year: 2013
  article-title: Quantitative analysis of PiB‐PET with FreeSurfer ROIs
  publication-title: PLoS One
– volume: 107
  start-page: 55
  year: 2015
  end-page: 64
  article-title: Partial volume correction in quantitative amyloid imaging
  publication-title: Neuroimage
– volume: 12
  start-page: 22
  year: 2020
  article-title: Comparison of amyloid PET measured in Centiloid units with neuropathological findings in Alzheimer's disease
  publication-title: Alzheimers Res Ther
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathol
– volume: 79
  year: 2020
  article-title: MedGAN: medical image translation using GANs
  publication-title: Comput Med Imaging Graph.
– volume: 54
  start-page: 70
  year: 2013
  end-page: 77
  article-title: Amyloid‐β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods
  publication-title: J Nucl Med
– volume: 53
  start-page: 415
  year: 2012
  end-page: 424
  article-title: Clinical validation of 18F‐AZD4694, an amyloid‐β‐specific PET radioligand
  publication-title: J Nucl Med
– volume: 286
  start-page: 676
  year: 2018
  end-page: 684
  article-title: Deep learning MR imaging‐based attenuation correction for PET/MR imaging
  publication-title: Radiology
– volume: 11
  start-page: 1
  year: 2015
  end-page: 15.e4
  article-title: The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET
  publication-title: Alzheimers Dement
– volume: 12
  start-page: 295
  year: 1991
  end-page: 312
  article-title: The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease
  publication-title: Neurobiol Aging
– year: 2019
– start-page: 770
  end-page: 778
– volume: 24
  start-page: 39
  year: 2020
  end-page: 49
  article-title: Deep residual inception encoder‐decoder network for medical imaging synthesis
  publication-title: IEEE J Biomed Health Inform
– volume: 2
  start-page: 975
  year: 2012
  end-page: 984
  article-title: Developing an international network for Alzheimer research: the Dominantly Inherited Alzheimer Network
  publication-title: Clin Investig (Lond)
SSID ssj0040815
Score 2.419042
Snippet Introduction Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation...
Multiple positron emission tomography (PET) tracers are available for amyloid imaging, posing a significant challenge to consensus interpretation and...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2448
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Amyloid - metabolism
amyloid PET
Amyloidogenic Proteins
Aniline Compounds
Brain - diagnostic imaging
Brain - metabolism
Centiloid
Humans
Positron-Emission Tomography - methods
Radiopharmaceuticals
Title Deep residual inception encoder‐decoder network for amyloid PET harmonization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.12564
https://www.ncbi.nlm.nih.gov/pubmed/35142053
https://www.proquest.com/docview/2627473264
Volume 18
WOSCitedRecordID wos000753468900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VwsDCQ7zKS0ZiYAlNHSexxVQBFUMpGSpUsUSO7UiVIK36YGDiJ_Ab-SWcnaYIiQGJxbLykKLzne875-47gHMEHSzivvH80PgeE5nwJLpJLzAIx5lBtXE824_duNfjg4FIanBV1cKU_BDLAzdrGW6_tgYus2nzmzRUPr9doneO2AqstloBt30bKEuqbZihrwsdWWpoo63Ir2iFfNpcvvobrPyJUp2b6Wz-6wO3YGOBLkm7VIdtqJliBx5ujBkTDKtd3RUZFotMFmI5LLWZfL5_aONmpCiTwgkiWSJfMJYfapLc9onltx5VJZu70O_c9q_vvEUfBU-he2aeNILmnGeBz5WOQiMtyVpGtZKxwmgoF5Iqo4SmKg9UFuVSccYE4pychwyv7UG9GBXmAEiu4wgtllGmcYkDyQWuqy_jrGW0iqO8AWeVPFNUU_vvQRZmNJ-m1Pb4iRErsgbsl4JOxyWfRmqLCShuBg24cPJc3igplWmKkkydJNN298lNDv_-6BGsU1uy4FJQjqE-m8zNCayp19lwOjl1OoNjPOA49pL7L-5Gxoo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qFfTiA1_1uYIHL7Fxu0k24KVopWKsPQQpXsJmdwMFTUsfHjz5E_yN_hJnN01F8CB4W_KAMDs73zebmW8BTpF0MJ-72nE97TosTENHIEw6DY10nGl0G6uz_RgFnQ7v9cJuBS7LXphCH2K-4WZWho3XZoGbDen6t2qoeH47R3j22QIsMkQZ4-WUdcs4zBDsPKuW6pl0y3dLXSGX1uev_sYrf9JUizM3a__7wnVYnfFL0iwcYgMqOt-Eh2uthwQTa9t5Rfr5rJaFGBVLpUef7x9K2xHJi7JwglyWiBfM5vuKdFsxMQrXg7Jpcwvim1Z81XZmJyk4EgGaOUKHNOM8bbhcKt_TwsispVRJEUjMh7JQUKllqKjMGjL1MyE5YyEynYx7DK9tQzUf5HoXSKYCH9cso0zhJDcED3FmXRGkF1rJwM9qcFIaNEFHNX8fRK4H03FCzSk_AbJFVoOdwtLJsFDUSEw7AcVwUIMza9D5jUJUmSZoycRaMmlGT3aw9_dHj2G5Hd9HSXTbuduHFWoaGGxBygFUJ6OpPoQl-Trpj0dH1oG-AHMdyIE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qFfHiA1_1GcGDl7XbNPsCL8VaFEvtoUjxsmSTWSjotvThwZM_wd_oL3GS7VYED4K3kN2FMJnHN5uZLwDnBDqEH7rouB66joiSyJEUJp06EhwXSGpjebYf20GnE_b7UbcEV0UvTM4PsfjhZizD-mtj4DjSafWbNVQ-v11SePbFEiwLL6gZneaiW_hhQcHOs2ypnkm3fLfgFXJ5dfHpb7jyJ0y1caa18b8VbsL6HF-yRq4QW1DCbBsemogjRom17bxig2xey8IMi6XG8ef7h0Y7YlleFs4IyzL5Qtn8QLPuTY8Zhuth0bS5A73WTe_61pnfpOAoCtDCkRjxNAyTuhsq7XsoDc1awrWSgaJ8KI0kV6gizVVaV4mfShUKERHSSUNP0NwulLNhhvvAUh34ZLOCC02bXJdhRDvryiCpoVaBn1bgrBBoTIpqTh9khsPZJObmlp-A0KKowF4u6XiUM2rEpp2AkzuowIUV6OJBTqrMY5JkbCUZN9pPdnDw91dPYbXbbMXtu879Iaxx079g61GOoDwdz_AYVtTrdDAZn1j9-QJkacgF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+residual+inception+encoder%E2%80%90decoder+network+for+amyloid+PET+harmonization&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Shah%2C+Jay&rft.au=Gao%2C+Fei&rft.au=Li%2C+Baoxin&rft.au=Ghisays%2C+Valentina&rft.date=2022-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=18&rft.issue=12&rft.spage=2448&rft.epage=2457&rft_id=info:doi/10.1002%2Falz.12564&rft.externalDBID=10.1002%252Falz.12564&rft.externalDocID=ALZ12564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon