Derivative-free robust optimization by outer approximations

We develop an algorithm for minimax problems that arise in robust optimization in the absence of objective function derivatives. The algorithm utilizes an extension of methods for inexact outer approximation in sampling a potentially infinite-cardinality uncertainty set. Clarke stationarity of the a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 179; číslo 1-2; s. 157 - 193
Hlavní autoři: Menickelly, Matt, Wild, Stefan M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2020
Springer Nature B.V
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop an algorithm for minimax problems that arise in robust optimization in the absence of objective function derivatives. The algorithm utilizes an extension of methods for inexact outer approximation in sampling a potentially infinite-cardinality uncertainty set. Clarke stationarity of the algorithm output is established alongside desirable features of the model-based trust-region subproblems encountered. We demonstrate the practical benefits of the algorithm on a new class of test problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-018-1326-9