Energy-Efficient Anomaly Detection and Chaoticity in Electric Vehicle Driving Behavior
Detection of abnormal situations in mobile systems not only provides predictions about risky situations but also has the potential to increase energy efficiency. In this study, two real-world drives of a battery electric vehicle and unsupervised hybrid anomaly detection approaches were developed. Th...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 24; H. 17; S. 5628 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
MDPI AG
30.08.2024
|
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!