Efficient HOG human detection

While Histograms of Oriented Gradients (HOG) plus Support Vector Machine (SVM) (HOG+SVM) is the most successful human detection algorithm, it is time-consuming. This paper proposes two ways to deal with this problem. One way is to reuse the features in blocks to construct the HOG features for inters...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal processing Ročník 91; číslo 4; s. 773 - 781
Hlavní autori: Pang, Yanwei, Yuan, Yuan, Li, Xuelong, Pan, Jing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.04.2011
Elsevier
Predmet:
ISSN:0165-1684, 1872-7557
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:While Histograms of Oriented Gradients (HOG) plus Support Vector Machine (SVM) (HOG+SVM) is the most successful human detection algorithm, it is time-consuming. This paper proposes two ways to deal with this problem. One way is to reuse the features in blocks to construct the HOG features for intersecting detection windows. Another way is to utilize sub-cell based interpolation to efficiently compute the HOG features for each block. The combination of the two ways results in significant increase in detecting humans—more than five times better. To evaluate the proposed method, we have established a top-view human database. Experimental results on the top-view database and the well-known INRIA data set have demonstrated the effectiveness and efficiency of the proposed method.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2010.08.010