MSC: a metagenomic sequence classification algorithm
Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align meta...
Gespeichert in:
| Veröffentlicht in: | Bioinformatics (Oxford, England) Jg. 35; H. 17; S. 2932 - 2940 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Oxford University Press
01.09.2019
|
| Schlagworte: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.
Microbiome researchers are generally interested in two objectives of a taxonomic classifier: (i) to detect prevalence, i.e. the taxa present in a sample, and (ii) to estimate their relative abundances. MSC is primarily designed to detect prevalence and experimental results show that MSC is indeed a more effective and efficient algorithm compared to the other state-of-the-art algorithms in terms of accuracy, memory and runtime. Moreover, MSC outputs an approximate estimate of the abundances.
The implementations are freely available for non-commercial purposes. They can be downloaded from https://drive.google.com/open?id=1XirkAamkQ3ltWvI1W1igYQFusp9DHtVl. |
|---|---|
| AbstractList | Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.
Microbiome researchers are generally interested in two objectives of a taxonomic classifier: (i) to detect prevalence, i.e. the taxa present in a sample, and (ii) to estimate their relative abundances. MSC is primarily designed to detect prevalence and experimental results show that MSC is indeed a more effective and efficient algorithm compared to the other state-of-the-art algorithms in terms of accuracy, memory and runtime. Moreover, MSC outputs an approximate estimate of the abundances.
The implementations are freely available for non-commercial purposes. They can be downloaded from https://drive.google.com/open?id=1XirkAamkQ3ltWvI1W1igYQFusp9DHtVl. Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.MOTIVATIONMetagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of microscopic life largely due to the existence of highly parallel and low-cost next-generation sequencing technology. Conventional approaches align metagenomic reads onto known reference genomes to identify microbes in the sample. Since such a collection of reference genomes is very large, the approach often needs high-end computing machines with large memory which is not often available to researchers. Alternative approaches follow an alignment-free methodology where the presence of a microbe is predicted using the information about the unique k-mers present in the microbial genomes. However, such approaches suffer from high false positives due to trading off the value of k with the computational resources. In this article, we propose a highly efficient metagenomic sequence classification (MSC) algorithm that is a hybrid of both approaches. Instead of aligning reads to the full genomes, MSC aligns reads onto a set of carefully chosen, shorter and highly discriminating model sequences built from the unique k-mers of each of the reference sequences.Microbiome researchers are generally interested in two objectives of a taxonomic classifier: (i) to detect prevalence, i.e. the taxa present in a sample, and (ii) to estimate their relative abundances. MSC is primarily designed to detect prevalence and experimental results show that MSC is indeed a more effective and efficient algorithm compared to the other state-of-the-art algorithms in terms of accuracy, memory and runtime. Moreover, MSC outputs an approximate estimate of the abundances.RESULTSMicrobiome researchers are generally interested in two objectives of a taxonomic classifier: (i) to detect prevalence, i.e. the taxa present in a sample, and (ii) to estimate their relative abundances. MSC is primarily designed to detect prevalence and experimental results show that MSC is indeed a more effective and efficient algorithm compared to the other state-of-the-art algorithms in terms of accuracy, memory and runtime. Moreover, MSC outputs an approximate estimate of the abundances.The implementations are freely available for non-commercial purposes. They can be downloaded from https://drive.google.com/open?id=1XirkAamkQ3ltWvI1W1igYQFusp9DHtVl.AVAILABILITY AND IMPLEMENTATIONThe implementations are freely available for non-commercial purposes. They can be downloaded from https://drive.google.com/open?id=1XirkAamkQ3ltWvI1W1igYQFusp9DHtVl. |
| Author | Rajasekaran, Sanguthevar Weinstock, George M Pal, Soumitra Johnson, Jethro Saha, Subrata |
| AuthorAffiliation | bty1071-aff1 Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center , Yorktown Heights, NY, USA bty1071-aff3 National Center for Biotechnology Information, National Institutes of Health , Bethesda, MD, USA bty1071-aff2 The Jackson Laboratory for Genomic Medicine , Farmington, CT, USA bty1071-aff4 Computer Science and Engineering Department, University of Connecticut , Storrs, CT, USA |
| AuthorAffiliation_xml | – name: bty1071-aff1 Healthcare and Life Sciences Division, IBM Thomas J. Watson Research Center , Yorktown Heights, NY, USA – name: bty1071-aff3 National Center for Biotechnology Information, National Institutes of Health , Bethesda, MD, USA – name: bty1071-aff4 Computer Science and Engineering Department, University of Connecticut , Storrs, CT, USA – name: bty1071-aff2 The Jackson Laboratory for Genomic Medicine , Farmington, CT, USA |
| Author_xml | – sequence: 1 givenname: Subrata surname: Saha fullname: Saha, Subrata – sequence: 2 givenname: Jethro surname: Johnson fullname: Johnson, Jethro – sequence: 3 givenname: Soumitra surname: Pal fullname: Pal, Soumitra – sequence: 4 givenname: George M surname: Weinstock fullname: Weinstock, George M – sequence: 5 givenname: Sanguthevar surname: Rajasekaran fullname: Rajasekaran, Sanguthevar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30649204$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUctOAyEUJUZjH_oLzSzd1MLwmBljTEzjK6lxoa4JMNBiZqAO1KR_L9raWDeuLrmcB5wzAIfOOw3ACMFzBCs8kdZbZ3zXimhVmMi4RrBAB6CPMCvGpETocHeGuAcGIbxBCCmk7Bj0MGSkyiHpA_L4PL3IRNbqKOba-daqLOj3lXZKZ6oRIVhjVTLxLhPN3Hc2LtoTcGREE_Tpdg7B6-3Ny_R-PHu6e5hez8aKIBLHNa4ppQZpnBNYGgwpritZpaUkZSVqA02uCS5KJkpYG6kUZTWRIpdE5pBJPARXG93lSra6VtrFTjR82dlWdGvuheX7N84u-Nx_cFZhhGmRBM62Ap1PfwqRtzYo3TTCab8KPEdFhUtc5jRBR7-9diY_USUA2wBU50PotNlBEORfnfD9Tvi2k0S8_ENUNn4nmt5sm__on3G2m7g |
| CitedBy_id | crossref_primary_10_1016_j_jbi_2023_104316 crossref_primary_10_1371_journal_pone_0267106 crossref_primary_10_1093_bioadv_vbad014 crossref_primary_10_3389_fmicb_2022_708335 |
| Cites_doi | 10.1093/bioinformatics/btx106 10.1186/gb-2014-15-3-r46 10.1016/j.gendis.2017.06.001 10.1038/srep19233 10.1093/bioinformatics/btx520 10.1128/mSystems.00020-16 10.1101/gr.096651.109 10.1093/nar/gkv1189 10.1089/10665270252935430 10.1371/journal.pone.0091784 10.1186/1471-2105-13-92 10.1109/BIBM.2010.5706544 10.1093/nar/gks251 10.7717/peerj-cs.104 10.1101/gr.5969107 10.1093/bioinformatics/btn322 10.1038/nmeth.3589 10.1111/j.2041-1014.2012.00642.x 10.1007/s00294-017-0693-8 10.1038/nmeth.2693 10.1186/s12864-015-1419-2 10.1093/bioinformatics/btt389 10.1186/1471-2105-10-421 10.1038/ismej.2016.174 10.1038/ncomms11257 10.1093/nar/gkm929 10.1093/bioinformatics/btw542 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2019 |
| Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2019 |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1093/bioinformatics/bty1071 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1367-4811 |
| EndPage | 2940 |
| ExternalDocumentID | PMC6931357 30649204 10_1093_bioinformatics_bty1071 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA034196 – fundername: ; ; ; – fundername: ; ; ; grantid: 1447711; 1743418 |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM NPM 7X8 5PM EJD |
| ID | FETCH-LOGICAL-c414t-d3d555f1e32408f3053d9b9d55b489adf0f2e43786a80dfbcc56d4ba2b4b206b3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487323400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Thu Aug 21 14:10:52 EDT 2025 Fri Jul 11 12:35:28 EDT 2025 Mon Jul 21 05:55:00 EDT 2025 Tue Nov 18 21:59:24 EST 2025 Sat Nov 29 03:49:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-d3d555f1e32408f3053d9b9d55b489adf0f2e43786a80dfbcc56d4ba2b4b206b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/bioinformatics/article-pdf/35/17/2932/31617943/bty1071.pdf |
| PMID | 30649204 |
| PQID | 2179383825 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6931357 proquest_miscellaneous_2179383825 pubmed_primary_30649204 crossref_primary_10_1093_bioinformatics_bty1071 crossref_citationtrail_10_1093_bioinformatics_bty1071 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics (Oxford, England) |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2019 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Diaz (2023062803480328100_bty1071-B8) 2012; 27 Buhler (2023062803480328100_bty1071-B5) 2002; 9 Ounit (2023062803480328100_bty1071-B21) 2016; 32 Ames (2023062803480328100_bty1071-B1) 2013; 29 Liu (2023062803480328100_bty1071-B15) 2010 Ounit (2023062803480328100_bty1071-B22) 2015; 16 Chao (2023062803480328100_bty1071-B7) 1984; 11 Jousset (2023062803480328100_bty1071-B11) 2017; 11 Angly (2023062803480328100_bty1071-B2) 2012; 40 Truong (2023062803480328100_bty1071-B26) 2015; 12 Koslicki (2023062803480328100_bty1071-B13) 2014; 9 Garrido-Cardenas (2023062803480328100_bty1071-B9) 2017; 63 Lindgreen (2023062803480328100_bty1071-B14) 2016; 6 Peterson (2023062803480328100_bty1071-B23) 2009; 19 Schaeffer (2023062803480328100_bty1071-B24) 2017; 33 Menzel (2023062803480328100_bty1071-B17) 2016; 7 Morgulis (2023062803480328100_bty1071-B18) 2008; 24 O’Leary (2023062803480328100_bty1071-B20) 2015; 44 Benson (2023062803480328100_bty1071-B4) 2008; 36 Huson (2023062803480328100_bty1071-B10) 2007; 17 Xia (2023062803480328100_bty1071-B28) 2017; 4 Koslicki (2023062803480328100_bty1071-B12) 2016; 1 Müller (2023062803480328100_bty1071-B19) 2017; 33 Wood (2023062803480328100_bty1071-B27) 2014; 15 Sunagawa (2023062803480328100_bty1071-B25) 2013; 10 Bazinet (2023062803480328100_bty1071-B3) 2012; 13 Camacho (2023062803480328100_bty1071-B6) 2009; 10 Lu (2023062803480328100_bty1071-B16) 2016; 3 |
| References_xml | – volume: 33 start-page: 2082 year: 2017 ident: 2023062803480328100_bty1071-B24 article-title: Pseudoalignment for metagenomic read assignment publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx106 – volume: 15 start-page: R46 year: 2014 ident: 2023062803480328100_bty1071-B27 article-title: Kraken: ultrafast metagenomic sequence classification using exact alignments publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r46 – volume: 4 start-page: 138 year: 2017 ident: 2023062803480328100_bty1071-B28 article-title: Hypothesis testing and statistical analysis of microbiome publication-title: Genes Dis. doi: 10.1016/j.gendis.2017.06.001 – volume: 6 start-page: 19233 year: 2016 ident: 2023062803480328100_bty1071-B14 article-title: An evaluation of the accuracy and speed of metagenome analysis tools publication-title: Sci. Rep. doi: 10.1038/srep19233 – volume: 33 start-page: 3740 year: 2017 ident: 2023062803480328100_bty1071-B19 article-title: MetaCache: context-aware classification of metagenomic reads using minhashing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx520 – volume: 1 year: 2016 ident: 2023062803480328100_bty1071-B12 article-title: MetaPalette: a k-mer painting approach for metagenomic taxonomic profiling and quantification of novel strain variation publication-title: mSystems doi: 10.1128/mSystems.00020-16 – volume: 19 start-page: 2317 year: 2009 ident: 2023062803480328100_bty1071-B23 article-title: The NIH human microbiome project publication-title: Genome Res. doi: 10.1101/gr.096651.109 – volume: 44 start-page: D733 year: 2015 ident: 2023062803480328100_bty1071-B20 article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1189 – volume: 9 start-page: 225 year: 2002 ident: 2023062803480328100_bty1071-B5 article-title: Finding motifs using random projections publication-title: J. Comput. Biol. doi: 10.1089/10665270252935430 – volume: 9 start-page: e91784 year: 2014 ident: 2023062803480328100_bty1071-B13 article-title: WGSQuikr: fast whole-genome shotgun metagenomic classification publication-title: PLoS One doi: 10.1371/journal.pone.0091784 – volume: 13 start-page: 92 year: 2012 ident: 2023062803480328100_bty1071-B3 article-title: A comparative evaluation of sequence classification programs publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-92 – volume-title: IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2010 ident: 2023062803480328100_bty1071-B15 article-title: MetaPhyler: taxonomic profiling for metagenomic sequences doi: 10.1109/BIBM.2010.5706544 – volume: 11 start-page: 265 year: 1984 ident: 2023062803480328100_bty1071-B7 article-title: Nonparametric estimation of the number of classes in a population publication-title: Scand. J. Stat. – volume: 40 start-page: e94 year: 2012 ident: 2023062803480328100_bty1071-B2 article-title: Grinder: a versatile amplicon and shotgun sequence simulator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks251 – volume: 3 start-page: e104 year: 2016 ident: 2023062803480328100_bty1071-B16 article-title: Bracken: estimating species abundance in metagenomics data publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.104 – volume: 17 start-page: 377 year: 2007 ident: 2023062803480328100_bty1071-B10 article-title: MEGAN analysis of metagenomic data publication-title: Genome Res. doi: 10.1101/gr.5969107 – volume: 24 start-page: 1757 year: 2008 ident: 2023062803480328100_bty1071-B18 article-title: Database indexing for production MegaBLAST searches publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn322 – volume: 12 start-page: 902 year: 2015 ident: 2023062803480328100_bty1071-B26 article-title: MetaPhlAn2 for enhanced metagenomic taxonomic profiling publication-title: Nat. Methods doi: 10.1038/nmeth.3589 – volume: 27 start-page: 182 year: 2012 ident: 2023062803480328100_bty1071-B8 article-title: Using high throughput sequencing to explore the biodiversity in oral bacterial communities publication-title: Mol. Oral Microbiol. doi: 10.1111/j.2041-1014.2012.00642.x – volume: 63 start-page: 819 year: 2017 ident: 2023062803480328100_bty1071-B9 article-title: The metagenomics worldwide research publication-title: Curr. Genet. doi: 10.1007/s00294-017-0693-8 – volume: 10 start-page: 1196 year: 2013 ident: 2023062803480328100_bty1071-B25 article-title: Metagenomic species profiling using universal phylogenetic marker genes publication-title: Nat. Methods doi: 10.1038/nmeth.2693 – volume: 16 start-page: 236 year: 2015 ident: 2023062803480328100_bty1071-B22 article-title: CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers publication-title: BMC Genomics doi: 10.1186/s12864-015-1419-2 – volume: 29 start-page: 2253 year: 2013 ident: 2023062803480328100_bty1071-B1 article-title: Scalable metagenomic taxonomy classification using a reference genome database publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt389 – volume: 10 start-page: 421 year: 2009 ident: 2023062803480328100_bty1071-B6 article-title: BLAST: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 11 start-page: 853 year: 2017 ident: 2023062803480328100_bty1071-B11 article-title: Where less may be more: how the rare biosphere pulls ecosystems strings publication-title: ISME J. doi: 10.1038/ismej.2016.174 – volume: 7 start-page: 11257 year: 2016 ident: 2023062803480328100_bty1071-B17 article-title: Fast and sensitive taxonomic classification for metagenomics with Kaiju publication-title: Nat. Commun. doi: 10.1038/ncomms11257 – volume: 36 start-page: D25 year: 2008 ident: 2023062803480328100_bty1071-B4 article-title: Genbank publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm929 – volume: 32 start-page: 3823 year: 2016 ident: 2023062803480328100_bty1071-B21 article-title: Higher classification sensitivity of short metagenomic reads with CLARK-S publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw542 |
| SSID | ssj0005056 |
| Score | 2.3464382 |
| Snippet | Metagenomics is the study of genetic materials directly sampled from natural habitats. It has the potential to reveal previously hidden diversity of... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2932 |
| SubjectTerms | Original Papers |
| Title | MSC: a metagenomic sequence classification algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30649204 https://www.proquest.com/docview/2179383825 https://pubmed.ncbi.nlm.nih.gov/PMC6931357 |
| Volume | 35 |
| WOSCitedRecordID | wos000487323400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED_Wbit9Gftss4_iwd6GSWzZlrW3UVrG2LpBMsibsWR5NTR2cJyS_vc7WZI_Wsa2h72YIFsy0e98Ot2dfgfwLqTcn0kp3IhK4gYR4S5Pc-oyXHszFXdieUuZ_4VeXMTLJftuIqabtpwALct4t2Pr_wo1tiHY6ujsP8DdDYoN-BtBxyvCjte_Av7r_FSfYF7JJlUUrCr73WZMvxfKWlbpQRr49OpnVRfN5WoU3C0qw6facjgrQtKdzYE3RT8GDoR5qmNGqIJqfdCtS8kxp7k-S1WMoQ9WtV7nebVdFU3drwqyQEvVaGftqTeeWuOT8PqkK1xStB4lik49NnrUKFrNS2IFig7VJtNOzjv6XHNd8dHfVg3NDW5bvWEXnNn1qoVU7amYr4sa3-LStrf24L5PQ6ZSABffln1KEFqD9hQ5I9Pxa6fmpYdwYIcZ2zJ3Nii382wHhsviMTwyOw7no5aUJ3BPlk_hoa5BevMMApSXD07qDKTFsdLijKXF6aTlOfw4P1ucfnJNKQ1XBF7QuBnJwjDMPan4F-MclTzJGGfYyIOYpVk-y30ZEBpHaTzLci5EGGUBT30e4LcccfIC9suqlMfgzHjuE-FToaxvTyp6Hylyhk-irUhpNoHQTkoiDM-8Kndyleh8B5KM5zUx8zqBaddvrZlW_tjjrZ3zBJWiinSlpay2m8RXy06MqiacwJHGoBvTgjcBOkKne0ARro_vlMVlS7weMeKRkL787Ziv4LD_HF7DflNv5Rt4IK6bYlOfwB5dxietyP0CR1Chvg |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSC%3A+a+metagenomic+sequence+classification+algorithm&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Saha%2C+Subrata&rft.au=Johnson%2C+Jethro&rft.au=Pal%2C+Soumitra&rft.au=Weinstock%2C+George+M&rft.date=2019-09-01&rft.eissn=1367-4811&rft.volume=35&rft.issue=17&rft.spage=2932&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbty1071&rft_id=info%3Apmid%2F30649204&rft.externalDocID=30649204 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |