Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics
Process optimization of photovoltaic devices is a time-intensive, trial-and-error endeavor, which lacks full transparency of the underlying physics and relies on user-imposed constraints that may or may not lead to a global optimum. Herein, we demonstrate that embedding physics domain knowledge into...
Gespeichert in:
| Veröffentlicht in: | npj computational materials Jg. 6; H. 1 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
31.01.2020
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 2057-3960, 2057-3960 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!