Fundamental clustering algorithms suite

The article presents immediate access to over fifty fundamental clustering algorithms. Additionally, access to clustering benchmark datasets published priorly as “Fundamental Clustering Problems Suite” (FCPS) is provided. The software library is named “FCPS”, available in R on CRAN and accessible wi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SoftwareX Ročník 13; s. 100642
Hlavní autoři: Thrun, Michael C., Stier, Quirin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2021
Elsevier
Témata:
ISSN:2352-7110, 2352-7110
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The article presents immediate access to over fifty fundamental clustering algorithms. Additionally, access to clustering benchmark datasets published priorly as “Fundamental Clustering Problems Suite” (FCPS) is provided. The software library is named “FCPS”, available in R on CRAN and accessible within Python. The input and output of clustering algorithms are standardized to enable users a swift execution of cluster analysis. By combining mirrored-density plots (MD plots) with statistical testing, FCPS provides a tool to investigate the cluster-tendency quickly before the cluster analysis itself. Common clustering challenges can be generated with an arbitrary sample size. Additionally, FCPS sums up 26 indicators intending to estimate the number of clusters and provides an appropriate implementation of the clustering accuracy for more than two clusters.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2020.100642