The 2020 skyrmionics roadmap
The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as s...
Saved in:
| Published in: | Journal of physics. D, Applied physics Vol. 53; no. 36 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IOP Publishing
02.09.2020
|
| Subjects: | |
| ISSN: | 0022-3727, 1361-6463 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics Roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices. |
|---|---|
| AbstractList | The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics Roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices. |
| Author | Ma, Tianping Garst, M Ebert, H Fert, A Nagaosa, N Monchesky, T L Rosch, A Everschor-Sitte, K Zang, Jiadong Mankovsky, S Back, C Mostovoy, M Taguchi, Y Cros, V Tokura, Y Reyren, N Pfleiderer, C Parkin, S S P von Bergmann, K |
| Author_xml | – sequence: 1 givenname: C surname: Back fullname: Back, C organization: Technical University of Munich Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 2 givenname: V surname: Cros fullname: Cros, V organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France – sequence: 3 givenname: H surname: Ebert fullname: Ebert, H organization: LMU Munich , Department of Chemistry, Butenandtstrasse 11, D-81377 Munich, Germany – sequence: 4 givenname: K orcidid: 0000-0001-8767-6633 surname: Everschor-Sitte fullname: Everschor-Sitte, K organization: Institute of Physics, Johannes Gutenberg University , 55128 Mainz, Germany – sequence: 5 givenname: A surname: Fert fullname: Fert, A organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France – sequence: 6 givenname: M surname: Garst fullname: Garst, M organization: Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology , 76131 Karlsruhe, Germany – sequence: 7 givenname: Tianping surname: Ma fullname: Ma, Tianping organization: Max Planck Institute for Microstructure Physics , Halle (Saale), Germany – sequence: 8 givenname: S surname: Mankovsky fullname: Mankovsky, S organization: LMU Munich , Department of Chemistry, Butenandtstrasse 11, D-81377 Munich, Germany – sequence: 9 givenname: T L surname: Monchesky fullname: Monchesky, T L organization: Department of Physics and Atmospheric Science, Dalhousie University , Halifax NS, B3H 4R2, Canada – sequence: 10 givenname: M surname: Mostovoy fullname: Mostovoy, M organization: Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands – sequence: 11 givenname: N surname: Nagaosa fullname: Nagaosa, N organization: Department of Applied Physics and Quantum Phase Electronics Center, University of Tokyo , Tokyo 113-8656, Japan – sequence: 12 givenname: S S P surname: Parkin fullname: Parkin, S S P organization: Max Planck Institute for Microstructure Physics , Halle (Saale), Germany – sequence: 13 givenname: C orcidid: 0000-0001-7749-7965 surname: Pfleiderer fullname: Pfleiderer, C organization: Technical University of Munich Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany – sequence: 14 givenname: N surname: Reyren fullname: Reyren, N organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France – sequence: 15 givenname: A surname: Rosch fullname: Rosch, A organization: Harvard University Department of Physics, Cambridge, MA 02138, United States of America – sequence: 16 givenname: Y surname: Taguchi fullname: Taguchi, Y organization: RIKEN Center for Emergent Matter Science (CEMS) , Wako 351-0198, Japan – sequence: 17 givenname: Y surname: Tokura fullname: Tokura, Y organization: Department of Applied Physics and Quantum Phase Electronics Center, University of Tokyo , Tokyo 113-8656, Japan – sequence: 18 givenname: K orcidid: 0000-0002-4514-3254 surname: von Bergmann fullname: von Bergmann, K organization: University of Hamburg Department of Physics, 20355 Hamburg, Germany – sequence: 19 givenname: Jiadong surname: Zang fullname: Zang, Jiadong organization: University of New Hampshire Department of Physics and Astronomy, Durham, NW 03824, United States of America |
| BookMark | eNptj81LxDAUxIOsYHf17sFDT56s-95LkyZHWfyCBS_rOSRpHnZ129Lqwf_elhVPwsDAMMzwW4pF27VJiEuEWwRj1ig1FrrUcu2DKdGciOwvWogMgKiQFVVnYjmOewBQ2mAmrnZvKScgyMf37-HQdG0Tx3zofH3w_bk4Zf8xpotfX4nXh_vd5qnYvjw-b-62RSyx_CyCYaYEjCFSqDxFlJyUVdZUoBLGVFdeBWLLJVOIymuwstaWA2k2huVK3Bx3m653--5raKc3h-BmMjdjuBnDHcmm-vU_9dop6aSeJAHQ9TXLH6I5Tf8 |
| CODEN | JPAPBE |
| CitedBy_id | crossref_primary_10_1016_j_jmmm_2021_168160 crossref_primary_10_1021_acs_nanolett_5c00781 crossref_primary_10_1039_D0NR02947E crossref_primary_10_1103_PhysRevResearch_4_L032025 crossref_primary_10_1063_5_0097343 crossref_primary_10_1103_PhysRevB_103_224423 crossref_primary_10_1002_adma_202208881 crossref_primary_10_1038_s43246_022_00323_6 crossref_primary_10_3389_fphy_2021_769873 crossref_primary_10_1063_5_0128733 crossref_primary_10_1039_D2NR01300B crossref_primary_10_1088_1361_6463_ac6cb2 crossref_primary_10_3389_fphy_2023_1340288 crossref_primary_10_1063_5_0184665 crossref_primary_10_1088_1361_6463_ac0e5a crossref_primary_10_1016_j_jallcom_2025_179156 crossref_primary_10_1103_ys1g_8597 crossref_primary_10_1038_s41467_024_55489_z crossref_primary_10_1038_s42005_021_00716_y crossref_primary_10_1063_5_0151875 crossref_primary_10_1088_1361_6463_ac4a39 crossref_primary_10_1002_agt2_590 crossref_primary_10_1016_j_jmmm_2022_169899 crossref_primary_10_1063_5_0033254 crossref_primary_10_1088_1361_648X_ad24bb crossref_primary_10_1007_s10825_020_01648_6 crossref_primary_10_1038_s41467_024_45316_w crossref_primary_10_1038_s41598_021_90308_1 crossref_primary_10_1063_5_0121314 crossref_primary_10_1088_1361_648X_adc648 crossref_primary_10_1038_s41467_022_31335_y crossref_primary_10_1038_s41598_022_20539_3 crossref_primary_10_1103_PhysRevResearch_5_033180 crossref_primary_10_1103_PhysRevApplied_14_054020 crossref_primary_10_1063_5_0072735 crossref_primary_10_1016_j_enganabound_2024_105966 crossref_primary_10_1002_aelm_202200770 crossref_primary_10_1038_s42005_025_02224_9 crossref_primary_10_1002_adfm_202416927 crossref_primary_10_1063_5_0020373 crossref_primary_10_1103_PhysRevApplied_22_024036 crossref_primary_10_1038_s41467_024_47730_6 crossref_primary_10_1063_5_0043742 crossref_primary_10_1038_s41467_022_28815_6 crossref_primary_10_1103_PhysRevApplied_18_064072 crossref_primary_10_1016_j_physleta_2023_129170 crossref_primary_10_1038_s41567_024_02465_5 crossref_primary_10_1088_1361_6463_ac8da0 crossref_primary_10_1109_ACCESS_2024_3472114 crossref_primary_10_1038_s41586_022_04995_5 crossref_primary_10_1088_1361_6463_aca777 crossref_primary_10_1016_j_jmmm_2025_173036 crossref_primary_10_1038_s41535_021_00408_4 crossref_primary_10_1063_5_0233449 crossref_primary_10_1103_PhysRevB_111_134447 crossref_primary_10_1016_j_cnsns_2023_107512 crossref_primary_10_1134_S0031918X22030097 crossref_primary_10_1103_PhysRevB_111_064410 crossref_primary_10_1002_apxr_202400206 crossref_primary_10_1063_5_0130720 crossref_primary_10_1088_1361_6528_acdad6 crossref_primary_10_1080_14786435_2021_1931523 crossref_primary_10_1002_pssr_202200057 crossref_primary_10_1080_23746149_2024_2409070 crossref_primary_10_1016_j_jmmm_2024_172694 crossref_primary_10_1002_adfm_202504100 crossref_primary_10_1088_1361_6528_acfd33 crossref_primary_10_1103_PhysRevB_108_174433 crossref_primary_10_1038_s41586_024_07131_7 crossref_primary_10_1038_s41427_021_00347_3 crossref_primary_10_1007_s10948_021_06111_6 crossref_primary_10_1103_PhysRevB_111_174106 crossref_primary_10_1007_s12598_022_02133_8 crossref_primary_10_1103_RevModPhys_95_025001 crossref_primary_10_1038_s41467_024_49976_6 crossref_primary_10_1063_5_0067682 crossref_primary_10_1016_j_physb_2021_413144 crossref_primary_10_1039_D0MH01603A crossref_primary_10_1103_PhysRevResearch_6_L032015 crossref_primary_10_1038_s41427_021_00290_3 crossref_primary_10_1038_s41567_023_02358_z crossref_primary_10_1088_1361_648X_aca5dc crossref_primary_10_1016_j_scib_2023_04_033 crossref_primary_10_1038_s43246_025_00858_4 crossref_primary_10_1038_s41467_023_41203_y crossref_primary_10_1088_2634_4386_adad0e crossref_primary_10_21468_SciPostPhys_18_2_064 crossref_primary_10_1016_j_nuclphysb_2025_117106 crossref_primary_10_1021_acs_jpcb_5c01578 crossref_primary_10_1103_PhysRevB_111_174441 crossref_primary_10_1002_qute_202500259 crossref_primary_10_1103_PhysRevB_106_134430 crossref_primary_10_1038_s41467_023_43814_x crossref_primary_10_1002_adma_202104406 crossref_primary_10_1038_s41598_021_81624_7 crossref_primary_10_1109_TED_2024_3442161 crossref_primary_10_1038_s41586_021_03219_6 crossref_primary_10_1038_s42005_024_01628_3 crossref_primary_10_1063_5_0187825 crossref_primary_10_1039_D4NR04027A crossref_primary_10_1103_tlpn_9s4z crossref_primary_10_1103_PhysRevB_104_224425 crossref_primary_10_1063_5_0283233 crossref_primary_10_1038_s41467_021_25389_7 crossref_primary_10_1103_PhysRevB_104_064432 crossref_primary_10_1038_s41524_021_00600_x crossref_primary_10_1063_5_0250430 crossref_primary_10_1103_6hty_s5sb crossref_primary_10_1103_PhysRevResearch_6_013102 crossref_primary_10_1007_s11433_021_1852_8 crossref_primary_10_1038_s42005_021_00761_7 crossref_primary_10_1002_adma_202306117 crossref_primary_10_1063_5_0042917 crossref_primary_10_1103_PhysRevResearch_2_043312 crossref_primary_10_1038_s41565_022_01144_x crossref_primary_10_1063_5_0153777 crossref_primary_10_1002_smll_202406299 crossref_primary_10_1134_S0021364022602512 crossref_primary_10_1557_s43577_021_00227_9 crossref_primary_10_1038_s44306_023_00006_z crossref_primary_10_1063_5_0101424 crossref_primary_10_1063_5_0160988 crossref_primary_10_1063_5_0142772 crossref_primary_10_1088_0256_307X_39_1_017501 crossref_primary_10_1038_s44306_025_00088_x crossref_primary_10_1063_5_0161132 crossref_primary_10_1103_PhysRevApplied_22_064087 crossref_primary_10_1038_s44306_024_00021_8 crossref_primary_10_1103_PhysRevB_108_064410 crossref_primary_10_1016_j_jmmm_2025_172960 crossref_primary_10_1002_adma_202108770 crossref_primary_10_1088_2053_1583_ad1a6b crossref_primary_10_1103_PhysRevB_108_L100407 crossref_primary_10_1103_nfw6_jsn6 crossref_primary_10_1103_PhysRevB_106_224403 crossref_primary_10_1016_j_jmmm_2022_169905 crossref_primary_10_1088_1361_6463_acb71f crossref_primary_10_1088_1674_1056_ac754f crossref_primary_10_3390_nano14181468 crossref_primary_10_1002_adma_202211634 crossref_primary_10_1063_5_0090527 crossref_primary_10_1038_s41578_021_00375_z crossref_primary_10_1109_TMAG_2021_3078583 crossref_primary_10_1038_s42005_025_01980_y crossref_primary_10_1103_PhysRevLett_130_206701 crossref_primary_10_1063_5_0027042 crossref_primary_10_1109_TED_2022_3220492 crossref_primary_10_1063_5_0063972 crossref_primary_10_1063_5_0195636 crossref_primary_10_1103_5bqm_n4j2 crossref_primary_10_1038_s42005_021_00675_4 crossref_primary_10_1103_587m_xvgv crossref_primary_10_1002_pssr_202100130 crossref_primary_10_1002_adfm_202008521 crossref_primary_10_1038_s41467_021_22857_y crossref_primary_10_1107_S1600576722010755 crossref_primary_10_1016_j_spl_2024_110285 crossref_primary_10_1002_adma_202304197 crossref_primary_10_1016_j_scib_2022_01_016 crossref_primary_10_1016_j_mtelec_2023_100060 crossref_primary_10_1146_annurev_conmatphys_031620_110344 crossref_primary_10_1103_PhysRevResearch_4_023111 crossref_primary_10_1063_5_0223004 crossref_primary_10_1063_5_0048891 crossref_primary_10_1126_science_abd9225 crossref_primary_10_1103_PhysRevResearch_6_023199 crossref_primary_10_1016_j_nxmate_2024_100448 crossref_primary_10_1016_j_jmmm_2021_168877 crossref_primary_10_1038_s41563_023_01698_8 crossref_primary_10_1038_s42005_023_01444_1 crossref_primary_10_1098_rsta_2020_0108 crossref_primary_10_3389_fmats_2022_825043 crossref_primary_10_1038_s42005_021_00646_9 crossref_primary_10_1103_PhysRevB_111_144411 crossref_primary_10_1016_j_jmmm_2020_167440 crossref_primary_10_1088_1367_2630_ac6c45 crossref_primary_10_1002_lpor_202300155 crossref_primary_10_1038_s41467_024_49288_9 crossref_primary_10_1103_PhysRevX_13_041027 crossref_primary_10_1103_PhysRevB_104_174432 crossref_primary_10_1088_1361_648X_ad2585 crossref_primary_10_1088_1361_6463_ad2a10 crossref_primary_10_3390_magnetochemistry7020026 crossref_primary_10_1016_j_cossms_2025_101220 crossref_primary_10_1088_1361_648X_ad9655 crossref_primary_10_1109_LMAG_2021_3136152 crossref_primary_10_1103_PhysRevB_106_094421 crossref_primary_10_7566_JPSJ_92_081004 crossref_primary_10_1038_s41467_022_30743_4 crossref_primary_10_1063_5_0081455 crossref_primary_10_1103_PhysRevB_104_075102 crossref_primary_10_7566_JPSJ_92_081005 crossref_primary_10_1063_5_0057144 crossref_primary_10_1103_PhysRevApplied_16_014040 crossref_primary_10_1002_idm2_12072 crossref_primary_10_1016_j_jmmm_2024_172768 crossref_primary_10_1038_s41598_022_13817_7 crossref_primary_10_1016_j_physe_2021_115015 crossref_primary_10_1016_j_jmmm_2021_168734 crossref_primary_10_1039_D2NR04399H crossref_primary_10_1038_s41563_024_01806_2 crossref_primary_10_1109_MNANO_2021_3113215 crossref_primary_10_1103_PhysRevB_106_094434 crossref_primary_10_1103_PhysRevApplied_17_064015 crossref_primary_10_1103_PhysRevMaterials_5_L101401 crossref_primary_10_1063_5_0049891 crossref_primary_10_1103_PhysRevResearch_6_023067 crossref_primary_10_1103_PhysRevMaterials_6_054413 crossref_primary_10_1134_S0021364024603439 crossref_primary_10_1002_adma_202208930 crossref_primary_10_1103_PhysRevB_108_144428 crossref_primary_10_1134_S0021364024600605 crossref_primary_10_1103_PhysRevB_106_104406 crossref_primary_10_1002_pssr_202200421 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by IOP Publishing Ltd |
| Copyright_xml | – notice: 2020 The Author(s). Published by IOP Publishing Ltd |
| DBID | O3W TSCCA |
| DOI | 10.1088/1361-6463/ab8418 |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| DocumentTitleAlternate | The 2020 skyrmionics roadmap |
| EISSN | 1361-6463 |
| ExternalDocumentID | dab8418 |
| GroupedDBID | -ET -~X 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ACNCT AEFHF AFFNX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE RIN RKQ RNS RO9 ROL RPA SY9 TAE TN5 TSCCA UCJ W28 WH7 XPP XSW YQT ZMT |
| ID | FETCH-LOGICAL-c414t-b8ff2e0f1bc2b7a2c13fe59598705e1ced7a5b2f9f4f2bc5a6093d69fb26f88f3 |
| IEDL.DBID | O3W |
| ISICitedReferencesCount | 312 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546895900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3727 |
| IngestDate | Wed Aug 21 03:34:39 EDT 2024 Thu Jan 07 15:20:51 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 36 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-b8ff2e0f1bc2b7a2c13fe59598705e1ced7a5b2f9f4f2bc5a6093d69fb26f88f3 |
| Notes | JPhysD-122829.R1 |
| ORCID | 0000-0001-7749-7965 0000-0001-8767-6633 0000-0002-4514-3254 |
| OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6463/ab8418 |
| PageCount | 37 |
| ParticipantIDs | iop_journals_10_1088_1361_6463_ab8418 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-02 |
| PublicationDateYYYYMMDD | 2020-09-02 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. D, Applied physics |
| PublicationTitleAbbrev | JPhysD |
| PublicationTitleAlternate | J. Phys. D: Appl. Phys |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| SSID | ssj0005681 |
| Score | 2.7133021 |
| Snippet | The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research.... |
| SourceID | iop |
| SourceType | Enrichment Source Publisher |
| SubjectTerms | magnetism skyrmion spintronics |
| Title | The 2020 skyrmionics roadmap |
| URI | https://iopscience.iop.org/article/10.1088/1361-6463/ab8418 |
| Volume | 53 |
| WOSCitedRecordID | wos000546895900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qVdCDj6pYrboHPcZ289osnkQsHqR68NFb2LxAxLZ0q-C_d_ZBreBBEHLIISSZzEy-CTOZATi1NkHc94YYaj3hnnKiECgIik5qUTOFK8sBPd0mg4EaDtP7BlzM_8KMJ_XVf47dKlFwdYR1QJzqxkzGRHLJuplRPFZLsMyUkIWQ37Hn7_gOqeJ5qnBE6dpH-dsMiCu42AKu9Df_taMt2KjNyeiyGroNDT9qwfpCksEWrJZBnjbfgQ7KRETRcovy109kcJEVN4-m48y9ZZNdeOxfP1zdkLo6ArE85jNiVAjU90JsLDVJRm3MghepSFEDhY-td0kmDA1p4IEaKzLZS5mTaTBUBqUC24PmaDzy-xAJntjEJNx7aXlW2TDOyZ51xjF8n7ThDEnXtXTnunRcK6ULunVBt67obsPJj3FOC6aZxMYQDfXEhYM_znQIa8VxlMFctAPN2fTdH8GK_Zi95NPjktFf5AakZA |
| linkProvider | IOP Publishing |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oXdCDS1WsVjsHPY7tZJvMUdSiWGoPLr2FyQYitqVTBf-9bxa0ggdByCGHkORt-V7Iy3sAJ8bEiPtOh5oYFzJHWCgRKEJUncSgZXJblAN67MX9vhwOk0FV57T4CzOeVEf_GXbLRMElC6uAONmOqIhCwQRtp1qySLYn1i_CEqec5rUb7ujTd4yHkNFXunBE6uqd8rdZEFtwwTls6W7-e1dbsFG5lcF5OXwbFtyoDutzyQbrsFIEe5psB5qoGwFBDy7IXj5Q0Hl23CyYjlP7mk524aF7dX9xHVZVEkLDIjYLtfSeuI6PtCE6TomJqHc84QlaIneRcTZOuSY-8cwTbXgqOgm1IvGaCC-lp3tQG41Hbh8CzmIT65g5JwxLS1_GWtExVluK95QGnCL5qtLyTBUP2FKqnHaV065K2hvQ-jHOKk4VFdgooqJCzhz8caYWrA4uu6p30789hLWcM0V8F2lCbTZ9c0ewbN5nz9n0uJD7J2N3qcM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+2020+skyrmionics+roadmap&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Back%2C+C&rft.au=Cros%2C+V&rft.au=Ebert%2C+H&rft.au=Everschor-Sitte%2C+K&rft.date=2020-09-02&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=53&rft.issue=36&rft_id=info:doi/10.1088%2F1361-6463%2Fab8418&rft.externalDocID=dab8418 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon |