The 2020 skyrmionics roadmap

The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. D, Applied physics Ročník 53; číslo 36
Hlavní autori: Back, C, Cros, V, Ebert, H, Everschor-Sitte, K, Fert, A, Garst, M, Ma, Tianping, Mankovsky, S, Monchesky, T L, Mostovoy, M, Nagaosa, N, Parkin, S S P, Pfleiderer, C, Reyren, N, Rosch, A, Taguchi, Y, Tokura, Y, von Bergmann, K, Zang, Jiadong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IOP Publishing 02.09.2020
Predmet:
ISSN:0022-3727, 1361-6463
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics Roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices.
AbstractList The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research. Magnetic materials offer a versatile platform that is particularly amenable for the exploration of topological spin solitons in real space such as skyrmions. First identified in non-centrosymmetric bulk materials, the rapidly growing zoology of materials systems hosting skyrmions and related topological spin solitons includes bulk compounds, surfaces, thin films, heterostructures, nano-wires and nano-dots. This underscores an exceptional potential for major breakthroughs ranging from fundamental questions to applications as driven by an interdisciplinary exchange of ideas between areas in magnetism which traditionally have been pursued rather independently. The skyrmionics Roadmap provides a review of the present state of the art and the wide range of research directions and strategies currently under way. These are, for instance, motivated by the identification of the fundamental structural properties of skyrmions and related textures, processes of nucleation and annihilation in the presence of non-trivial topological winding, an exceptionally efficient coupling to spin currents generating spin transfer torques at tiny current densities, as well as the capability to purpose-design broad-band spin dynamic and logic devices.
Author Ma, Tianping
Garst, M
Ebert, H
Fert, A
Nagaosa, N
Monchesky, T L
Rosch, A
Everschor-Sitte, K
Zang, Jiadong
Mankovsky, S
Back, C
Mostovoy, M
Taguchi, Y
Cros, V
Tokura, Y
Reyren, N
Pfleiderer, C
Parkin, S S P
von Bergmann, K
Author_xml – sequence: 1
  givenname: C
  surname: Back
  fullname: Back, C
  organization: Technical University of Munich Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 2
  givenname: V
  surname: Cros
  fullname: Cros, V
  organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France
– sequence: 3
  givenname: H
  surname: Ebert
  fullname: Ebert, H
  organization: LMU Munich , Department of Chemistry, Butenandtstrasse 11, D-81377 Munich, Germany
– sequence: 4
  givenname: K
  orcidid: 0000-0001-8767-6633
  surname: Everschor-Sitte
  fullname: Everschor-Sitte, K
  organization: Institute of Physics, Johannes Gutenberg University , 55128 Mainz, Germany
– sequence: 5
  givenname: A
  surname: Fert
  fullname: Fert, A
  organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France
– sequence: 6
  givenname: M
  surname: Garst
  fullname: Garst, M
  organization: Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology , 76131 Karlsruhe, Germany
– sequence: 7
  givenname: Tianping
  surname: Ma
  fullname: Ma, Tianping
  organization: Max Planck Institute for Microstructure Physics , Halle (Saale), Germany
– sequence: 8
  givenname: S
  surname: Mankovsky
  fullname: Mankovsky, S
  organization: LMU Munich , Department of Chemistry, Butenandtstrasse 11, D-81377 Munich, Germany
– sequence: 9
  givenname: T L
  surname: Monchesky
  fullname: Monchesky, T L
  organization: Department of Physics and Atmospheric Science, Dalhousie University , Halifax NS, B3H 4R2, Canada
– sequence: 10
  givenname: M
  surname: Mostovoy
  fullname: Mostovoy, M
  organization: Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
– sequence: 11
  givenname: N
  surname: Nagaosa
  fullname: Nagaosa, N
  organization: Department of Applied Physics and Quantum Phase Electronics Center, University of Tokyo , Tokyo 113-8656, Japan
– sequence: 12
  givenname: S S P
  surname: Parkin
  fullname: Parkin, S S P
  organization: Max Planck Institute for Microstructure Physics , Halle (Saale), Germany
– sequence: 13
  givenname: C
  orcidid: 0000-0001-7749-7965
  surname: Pfleiderer
  fullname: Pfleiderer, C
  organization: Technical University of Munich Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany
– sequence: 14
  givenname: N
  surname: Reyren
  fullname: Reyren, N
  organization: Unité Mixte de Physique CNRS/Thales (UMR137) , 1 avenue A. Fresnel, 91767 Palaiseau Cedex, France
– sequence: 15
  givenname: A
  surname: Rosch
  fullname: Rosch, A
  organization: Harvard University Department of Physics, Cambridge, MA 02138, United States of America
– sequence: 16
  givenname: Y
  surname: Taguchi
  fullname: Taguchi, Y
  organization: RIKEN Center for Emergent Matter Science (CEMS) , Wako 351-0198, Japan
– sequence: 17
  givenname: Y
  surname: Tokura
  fullname: Tokura, Y
  organization: Department of Applied Physics and Quantum Phase Electronics Center, University of Tokyo , Tokyo 113-8656, Japan
– sequence: 18
  givenname: K
  orcidid: 0000-0002-4514-3254
  surname: von Bergmann
  fullname: von Bergmann, K
  organization: University of Hamburg Department of Physics, 20355 Hamburg, Germany
– sequence: 19
  givenname: Jiadong
  surname: Zang
  fullname: Zang, Jiadong
  organization: University of New Hampshire Department of Physics and Astronomy, Durham, NW 03824, United States of America
BookMark eNptj81LxDAUxIOsYHf17sFDT56s-95LkyZHWfyCBS_rOSRpHnZ129Lqwf_elhVPwsDAMMzwW4pF27VJiEuEWwRj1ig1FrrUcu2DKdGciOwvWogMgKiQFVVnYjmOewBQ2mAmrnZvKScgyMf37-HQdG0Tx3zofH3w_bk4Zf8xpotfX4nXh_vd5qnYvjw-b-62RSyx_CyCYaYEjCFSqDxFlJyUVdZUoBLGVFdeBWLLJVOIymuwstaWA2k2huVK3Bx3m653--5raKc3h-BmMjdjuBnDHcmm-vU_9dop6aSeJAHQ9TXLH6I5Tf8
CODEN JPAPBE
CitedBy_id crossref_primary_10_1016_j_jmmm_2021_168160
crossref_primary_10_1021_acs_nanolett_5c00781
crossref_primary_10_1039_D0NR02947E
crossref_primary_10_1103_PhysRevResearch_4_L032025
crossref_primary_10_1063_5_0097343
crossref_primary_10_1103_PhysRevB_103_224423
crossref_primary_10_1002_adma_202208881
crossref_primary_10_1038_s43246_022_00323_6
crossref_primary_10_3389_fphy_2021_769873
crossref_primary_10_1063_5_0128733
crossref_primary_10_1039_D2NR01300B
crossref_primary_10_1088_1361_6463_ac6cb2
crossref_primary_10_3389_fphy_2023_1340288
crossref_primary_10_1063_5_0184665
crossref_primary_10_1088_1361_6463_ac0e5a
crossref_primary_10_1016_j_jallcom_2025_179156
crossref_primary_10_1103_ys1g_8597
crossref_primary_10_1038_s41467_024_55489_z
crossref_primary_10_1038_s42005_021_00716_y
crossref_primary_10_1063_5_0151875
crossref_primary_10_1088_1361_6463_ac4a39
crossref_primary_10_1002_agt2_590
crossref_primary_10_1016_j_jmmm_2022_169899
crossref_primary_10_1063_5_0033254
crossref_primary_10_1088_1361_648X_ad24bb
crossref_primary_10_1007_s10825_020_01648_6
crossref_primary_10_1038_s41467_024_45316_w
crossref_primary_10_1038_s41598_021_90308_1
crossref_primary_10_1063_5_0121314
crossref_primary_10_1088_1361_648X_adc648
crossref_primary_10_1038_s41467_022_31335_y
crossref_primary_10_1038_s41598_022_20539_3
crossref_primary_10_1103_PhysRevResearch_5_033180
crossref_primary_10_1103_PhysRevApplied_14_054020
crossref_primary_10_1063_5_0072735
crossref_primary_10_1016_j_enganabound_2024_105966
crossref_primary_10_1002_aelm_202200770
crossref_primary_10_1038_s42005_025_02224_9
crossref_primary_10_1002_adfm_202416927
crossref_primary_10_1063_5_0020373
crossref_primary_10_1103_PhysRevApplied_22_024036
crossref_primary_10_1038_s41467_024_47730_6
crossref_primary_10_1063_5_0043742
crossref_primary_10_1038_s41467_022_28815_6
crossref_primary_10_1103_PhysRevApplied_18_064072
crossref_primary_10_1016_j_physleta_2023_129170
crossref_primary_10_1038_s41567_024_02465_5
crossref_primary_10_1088_1361_6463_ac8da0
crossref_primary_10_1109_ACCESS_2024_3472114
crossref_primary_10_1038_s41586_022_04995_5
crossref_primary_10_1088_1361_6463_aca777
crossref_primary_10_1016_j_jmmm_2025_173036
crossref_primary_10_1038_s41535_021_00408_4
crossref_primary_10_1063_5_0233449
crossref_primary_10_1103_PhysRevB_111_134447
crossref_primary_10_1016_j_cnsns_2023_107512
crossref_primary_10_1134_S0031918X22030097
crossref_primary_10_1103_PhysRevB_111_064410
crossref_primary_10_1002_apxr_202400206
crossref_primary_10_1063_5_0130720
crossref_primary_10_1088_1361_6528_acdad6
crossref_primary_10_1080_14786435_2021_1931523
crossref_primary_10_1002_pssr_202200057
crossref_primary_10_1080_23746149_2024_2409070
crossref_primary_10_1016_j_jmmm_2024_172694
crossref_primary_10_1002_adfm_202504100
crossref_primary_10_1088_1361_6528_acfd33
crossref_primary_10_1103_PhysRevB_108_174433
crossref_primary_10_1038_s41586_024_07131_7
crossref_primary_10_1038_s41427_021_00347_3
crossref_primary_10_1007_s10948_021_06111_6
crossref_primary_10_1103_PhysRevB_111_174106
crossref_primary_10_1007_s12598_022_02133_8
crossref_primary_10_1103_RevModPhys_95_025001
crossref_primary_10_1038_s41467_024_49976_6
crossref_primary_10_1063_5_0067682
crossref_primary_10_1016_j_physb_2021_413144
crossref_primary_10_1039_D0MH01603A
crossref_primary_10_1103_PhysRevResearch_6_L032015
crossref_primary_10_1038_s41427_021_00290_3
crossref_primary_10_1038_s41567_023_02358_z
crossref_primary_10_1088_1361_648X_aca5dc
crossref_primary_10_1016_j_scib_2023_04_033
crossref_primary_10_1038_s43246_025_00858_4
crossref_primary_10_1038_s41467_023_41203_y
crossref_primary_10_1088_2634_4386_adad0e
crossref_primary_10_21468_SciPostPhys_18_2_064
crossref_primary_10_1016_j_nuclphysb_2025_117106
crossref_primary_10_1021_acs_jpcb_5c01578
crossref_primary_10_1103_PhysRevB_111_174441
crossref_primary_10_1002_qute_202500259
crossref_primary_10_1103_PhysRevB_106_134430
crossref_primary_10_1038_s41467_023_43814_x
crossref_primary_10_1002_adma_202104406
crossref_primary_10_1038_s41598_021_81624_7
crossref_primary_10_1109_TED_2024_3442161
crossref_primary_10_1038_s41586_021_03219_6
crossref_primary_10_1038_s42005_024_01628_3
crossref_primary_10_1063_5_0187825
crossref_primary_10_1039_D4NR04027A
crossref_primary_10_1103_tlpn_9s4z
crossref_primary_10_1103_PhysRevB_104_224425
crossref_primary_10_1063_5_0283233
crossref_primary_10_1038_s41467_021_25389_7
crossref_primary_10_1103_PhysRevB_104_064432
crossref_primary_10_1038_s41524_021_00600_x
crossref_primary_10_1063_5_0250430
crossref_primary_10_1103_6hty_s5sb
crossref_primary_10_1103_PhysRevResearch_6_013102
crossref_primary_10_1007_s11433_021_1852_8
crossref_primary_10_1038_s42005_021_00761_7
crossref_primary_10_1002_adma_202306117
crossref_primary_10_1063_5_0042917
crossref_primary_10_1103_PhysRevResearch_2_043312
crossref_primary_10_1038_s41565_022_01144_x
crossref_primary_10_1063_5_0153777
crossref_primary_10_1002_smll_202406299
crossref_primary_10_1134_S0021364022602512
crossref_primary_10_1557_s43577_021_00227_9
crossref_primary_10_1038_s44306_023_00006_z
crossref_primary_10_1063_5_0101424
crossref_primary_10_1063_5_0160988
crossref_primary_10_1063_5_0142772
crossref_primary_10_1088_0256_307X_39_1_017501
crossref_primary_10_1038_s44306_025_00088_x
crossref_primary_10_1063_5_0161132
crossref_primary_10_1103_PhysRevApplied_22_064087
crossref_primary_10_1038_s44306_024_00021_8
crossref_primary_10_1103_PhysRevB_108_064410
crossref_primary_10_1016_j_jmmm_2025_172960
crossref_primary_10_1002_adma_202108770
crossref_primary_10_1088_2053_1583_ad1a6b
crossref_primary_10_1103_PhysRevB_108_L100407
crossref_primary_10_1103_nfw6_jsn6
crossref_primary_10_1103_PhysRevB_106_224403
crossref_primary_10_1016_j_jmmm_2022_169905
crossref_primary_10_1088_1361_6463_acb71f
crossref_primary_10_1088_1674_1056_ac754f
crossref_primary_10_3390_nano14181468
crossref_primary_10_1002_adma_202211634
crossref_primary_10_1063_5_0090527
crossref_primary_10_1038_s41578_021_00375_z
crossref_primary_10_1109_TMAG_2021_3078583
crossref_primary_10_1038_s42005_025_01980_y
crossref_primary_10_1103_PhysRevLett_130_206701
crossref_primary_10_1063_5_0027042
crossref_primary_10_1109_TED_2022_3220492
crossref_primary_10_1063_5_0063972
crossref_primary_10_1063_5_0195636
crossref_primary_10_1103_5bqm_n4j2
crossref_primary_10_1038_s42005_021_00675_4
crossref_primary_10_1103_587m_xvgv
crossref_primary_10_1002_pssr_202100130
crossref_primary_10_1002_adfm_202008521
crossref_primary_10_1038_s41467_021_22857_y
crossref_primary_10_1107_S1600576722010755
crossref_primary_10_1016_j_spl_2024_110285
crossref_primary_10_1002_adma_202304197
crossref_primary_10_1016_j_scib_2022_01_016
crossref_primary_10_1016_j_mtelec_2023_100060
crossref_primary_10_1146_annurev_conmatphys_031620_110344
crossref_primary_10_1103_PhysRevResearch_4_023111
crossref_primary_10_1063_5_0223004
crossref_primary_10_1063_5_0048891
crossref_primary_10_1126_science_abd9225
crossref_primary_10_1103_PhysRevResearch_6_023199
crossref_primary_10_1016_j_nxmate_2024_100448
crossref_primary_10_1016_j_jmmm_2021_168877
crossref_primary_10_1038_s41563_023_01698_8
crossref_primary_10_1038_s42005_023_01444_1
crossref_primary_10_1098_rsta_2020_0108
crossref_primary_10_3389_fmats_2022_825043
crossref_primary_10_1038_s42005_021_00646_9
crossref_primary_10_1103_PhysRevB_111_144411
crossref_primary_10_1016_j_jmmm_2020_167440
crossref_primary_10_1088_1367_2630_ac6c45
crossref_primary_10_1002_lpor_202300155
crossref_primary_10_1038_s41467_024_49288_9
crossref_primary_10_1103_PhysRevX_13_041027
crossref_primary_10_1103_PhysRevB_104_174432
crossref_primary_10_1088_1361_648X_ad2585
crossref_primary_10_1088_1361_6463_ad2a10
crossref_primary_10_3390_magnetochemistry7020026
crossref_primary_10_1016_j_cossms_2025_101220
crossref_primary_10_1088_1361_648X_ad9655
crossref_primary_10_1109_LMAG_2021_3136152
crossref_primary_10_1103_PhysRevB_106_094421
crossref_primary_10_7566_JPSJ_92_081004
crossref_primary_10_1038_s41467_022_30743_4
crossref_primary_10_1063_5_0081455
crossref_primary_10_1103_PhysRevB_104_075102
crossref_primary_10_7566_JPSJ_92_081005
crossref_primary_10_1063_5_0057144
crossref_primary_10_1103_PhysRevApplied_16_014040
crossref_primary_10_1002_idm2_12072
crossref_primary_10_1016_j_jmmm_2024_172768
crossref_primary_10_1038_s41598_022_13817_7
crossref_primary_10_1016_j_physe_2021_115015
crossref_primary_10_1016_j_jmmm_2021_168734
crossref_primary_10_1039_D2NR04399H
crossref_primary_10_1038_s41563_024_01806_2
crossref_primary_10_1109_MNANO_2021_3113215
crossref_primary_10_1103_PhysRevB_106_094434
crossref_primary_10_1103_PhysRevApplied_17_064015
crossref_primary_10_1103_PhysRevMaterials_5_L101401
crossref_primary_10_1063_5_0049891
crossref_primary_10_1103_PhysRevResearch_6_023067
crossref_primary_10_1103_PhysRevMaterials_6_054413
crossref_primary_10_1134_S0021364024603439
crossref_primary_10_1002_adma_202208930
crossref_primary_10_1103_PhysRevB_108_144428
crossref_primary_10_1134_S0021364024600605
crossref_primary_10_1103_PhysRevB_106_104406
crossref_primary_10_1002_pssr_202200421
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
DOI 10.1088/1361-6463/ab8418
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate The 2020 skyrmionics roadmap
EISSN 1361-6463
ExternalDocumentID dab8418
GroupedDBID -ET
-~X
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
O3W
P2P
PJBAE
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TSCCA
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
ID FETCH-LOGICAL-c414t-b8ff2e0f1bc2b7a2c13fe59598705e1ced7a5b2f9f4f2bc5a6093d69fb26f88f3
IEDL.DBID O3W
ISICitedReferencesCount 312
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000546895900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3727
IngestDate Wed Aug 21 03:34:39 EDT 2024
Thu Jan 07 15:20:51 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-b8ff2e0f1bc2b7a2c13fe59598705e1ced7a5b2f9f4f2bc5a6093d69fb26f88f3
Notes JPhysD-122829.R1
ORCID 0000-0001-7749-7965
0000-0001-8767-6633
0000-0002-4514-3254
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6463/ab8418
PageCount 37
ParticipantIDs iop_journals_10_1088_1361_6463_ab8418
PublicationCentury 2000
PublicationDate 2020-09-02
PublicationDateYYYYMMDD 2020-09-02
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-02
  day: 02
PublicationDecade 2020
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
SSID ssj0005681
Score 2.7133021
Snippet The notion of non-trivial topological winding in condensed matter systems represents a major area of present-day theoretical and experimental research....
SourceID iop
SourceType Enrichment Source
Publisher
SubjectTerms magnetism
skyrmion
spintronics
Title The 2020 skyrmionics roadmap
URI https://iopscience.iop.org/article/10.1088/1361-6463/ab8418
Volume 53
WOSCitedRecordID wos000546895900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5qVdCDj6pYrboHPcY27wRPIhYPUj346C1skg2I2JZuFfz3Zh_UCh4EIYccwiSTTPJNyMwXgFPqpRfxmEPBBo4YtRmylgbkdPSOVUEAUuZXPN3KwUANh_q-ARfzXJjxpD76z2O1IgquprAOiFNdTAVGggnaTa1iWC3BMlVcFEZ-R5-_4zuEwnOq8IjS9RvlbxIirsTOFnClv_mvEW3BRu1OJpdV021oZKMWrC-QDLZgtQzydPkOdKJNJCR6bkn--hkXuGDFzZPpOPVv6WQXHvvXD1c3qP4dATmG2QxZFQLJegFbR6xMicM0ZFxzHXcgz7DLvEy5JUEHFoh1PBU9Tb3QwRIRlAp0D5qj8Sjbh4RFjJaCqXjLjhcG19NeytQLwb2VGivbhrOouqmtOzflw7VSptDbFHqbSu82nPxo5w2nhopYaERDM_Hh4I-SDmGtmI4ymIt0oDmbvmdHsOI-Zi_59Lhc6C8RS6QV
linkProvider IOP Publishing
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PtCDj6pYrXYPelzbbDbZ5ChqUSy1Bx-9hc0LRGxLtwr-e2cfaAUPgpBDDiHJTB7fhJl8A3BCbWI5XnOh156FMdUu1Jr60Ei0jkVOAFL8r3jsJf2-GA7loMpzWvyFGU-qq_8MqyVRcKnCKiBOtAnlJOQxp-1Ui5iI9sT6RVhilNE8d8MdffqO8eCCfNGFI1JXfsrfekFswQHnsKW7-e9ZbcFGZVYG52XzbVhwozqsz5EN1mGlCPY02Q40cW8EEVpwQfbygQuds-NmwXSc2td0sgsP3av7i-uwypIQmpjEs1AL7yPX8USbSCdpZAj1jkkm8SQyR4yzScp05KWPfaQNS3lHUsul1xH3Qni6B7XReOT2IYgRqxMeC3xt48PBdKRNktRyzqxOJBG6Aacovqp2eaYKB7YQKpdd5bKrUvYGtH60s4pRRTkWiqioUDMHf-ypBauDy67q3fRvD2Et10wR3xU1oTabvrkjWDbvs-dselys-yePMKl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+2020+skyrmionics+roadmap&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Back%2C+C&rft.au=Cros%2C+V&rft.au=Ebert%2C+H&rft.au=Everschor-Sitte%2C+K&rft.date=2020-09-02&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=53&rft.issue=36&rft_id=info:doi/10.1088%2F1361-6463%2Fab8418&rft.externalDocID=dab8418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon