New inapproximability bounds for TSP

In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric ca...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computer and system sciences Ročník 81; číslo 8; s. 1665 - 1677
Hlavní autori: Karpinski, Marek, Lampis, Michael, Schmied, Richard
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.12.2015
Predmet:
ISSN:0022-0000, 1090-2724
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results.
AbstractList In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem. The best up to now known hardness of approximation bounds were 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and Vempala). We construct here two new bounded occurrence CSP reductions which improve these bounds to 123/122 and 75/74, respectively. The latter bound is the first improvement in more than a decade for the case of the asymmetric TSP. One of our main tools, which may be of independent interest, is a new construction of a bounded degree wheel amplifier used in the proof of our results.
Author Schmied, Richard
Lampis, Michael
Karpinski, Marek
Author_xml – sequence: 1
  givenname: Marek
  surname: Karpinski
  fullname: Karpinski, Marek
  organization: Department of Computer Science, University of Bonn, Germany
– sequence: 2
  givenname: Michael
  surname: Lampis
  fullname: Lampis, Michael
  email: mlampis@kurims.kyoto-u.ac.jp
  organization: Research Institute for Mathematical Sciences (RIMS), Kyoto University, Japan
– sequence: 3
  givenname: Richard
  surname: Schmied
  fullname: Schmied, Richard
  organization: Department of Computer Science, University of Bonn, Germany
BookMark eNp9z0tLxDAQwPEgK9hd_QKeevDaOpM-koIXWXzBooLrOaRJCim1WZL42G9vy3rysMPAnP4DvyVZjG40hFwi5AhYX_d5r0LIKWCVQ50DFCckQWggo4yWC5IAUJrBNGdkGUIPgFjVRUKuns13ake523n3Yz9kawcb92nrPkcd0s75dPv2ek5OOzkEc_F3V-T9_m67fsw2Lw9P69tNpkosYyY1bxmqZlqFlGKtWVXpoiwYVYZ1WFBueC05ViXTrJW8q1omG8kZ1wakLlaEH_4q70LwphPKRhmtG6OXdhAIYtaKXsxaMWsF1GLSTin9l-78xPH749HNITIT6ssaL4KyZlRGW29UFNrZY_kvwTZvkg
CitedBy_id crossref_primary_10_1007_s10107_017_1195_7
crossref_primary_10_1007_s10107_019_01394_z
crossref_primary_10_1287_moor_2020_1100
crossref_primary_10_1007_s12532_020_00184_5
crossref_primary_10_1016_j_jctb_2022_09_002
crossref_primary_10_1007_s10107_025_02221_4
crossref_primary_10_1002_net_21985
crossref_primary_10_1109_TMC_2020_3008348
crossref_primary_10_1007_s10878_020_00659_0
crossref_primary_10_1016_j_jcss_2023_03_007
crossref_primary_10_1137_20M135594X
crossref_primary_10_1007_s10479_021_03933_4
crossref_primary_10_1287_opre_2022_2338
crossref_primary_10_1007_s00453_020_00785_5
crossref_primary_10_1137_17M1154722
crossref_primary_10_1007_s00440_024_01279_z
crossref_primary_10_1109_TMC_2022_3229112
crossref_primary_10_1007_s10479_025_06641_5
crossref_primary_10_1007_s10878_022_00944_0
crossref_primary_10_1007_s10878_017_0123_3
crossref_primary_10_1145_3478537
crossref_primary_10_1016_j_jcss_2023_103476
crossref_primary_10_1016_j_disopt_2019_03_003
crossref_primary_10_1137_20M1339313
crossref_primary_10_1007_s12044_019_0517_5
crossref_primary_10_1137_19M1245840
crossref_primary_10_1088_1755_1315_659_1_012111
crossref_primary_10_1287_moor_2022_1265
crossref_primary_10_1007_s10878_018_0290_x
crossref_primary_10_1109_TNET_2018_2815630
crossref_primary_10_1016_j_asoc_2024_111858
crossref_primary_10_1007_s10951_021_00680_z
crossref_primary_10_1155_2021_5552350
crossref_primary_10_1002_jgt_23108
Cites_doi 10.1016/j.jcss.2005.12.001
10.1007/s00493-014-2960-3
10.1051/ro/2014062
10.1007/s00493-006-0008-z
10.4086/toc.2014.v010a009
10.1109/FOCS.2011.56
10.1145/278298.278306
10.1287/moor.18.1.1
10.1109/FOCS.2011.80
10.1007/s00453-002-1001-6
10.1145/502090.502098
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jcss.2015.06.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1090-2724
EndPage 1677
ExternalDocumentID 10_1016_j_jcss_2015_06_003
S0022000015000641
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science, and Technology
  funderid: http://dx.doi.org/10.13039/501100001700
– fundername: Hausdorff
  grantid: EXC59-1/2
– fundername: Hausdorff Doctoral Fellowship
– fundername: ERC
  grantid: 226203
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: DFG
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYJJ
ABBOA
ABEFU
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TN5
TWZ
UPT
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c414t-ad8b71c91c9c12216d755d34372ce7f1328e86a81547d7ba8f5b7a9a878de0ad3
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360777200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0000
IngestDate Sat Nov 29 07:50:39 EST 2025
Tue Nov 18 21:47:21 EST 2025
Fri Feb 23 02:19:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Hardness of approximation
Travelling Salesman Problem
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-ad8b71c91c9c12216d755d34372ce7f1328e86a81547d7ba8f5b7a9a878de0ad3
OpenAccessLink https://dx.doi.org/10.1016/j.jcss.2015.06.003
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_jcss_2015_06_003
crossref_primary_10_1016_j_jcss_2015_06_003
elsevier_sciencedirect_doi_10_1016_j_jcss_2015_06_003
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computer and system sciences
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lampis (br0180) 2014; 10
Berman, Karpinski (br0060) 2006
Bläser (br0070) 2004; vol. 3122
(br0210) 2011
Shayan Oveis Gharan, Amin Saberi, Mohit Singh, A randomized rounding approach to the traveling salesman problem, in: Ostrovsky
Papadimitriou, Yannakakis (br0230) 1993; 18
Berman, Karpinski (br0030) 1999; vol. 1644
Engebretsen (br0110) 2003; 35
Berman, Karpinski (br0040) 2001; 8
Christofides (br0100) 1976
Tobias Mömke, Ola Svensson, Approximating graphic TSP by matchings, in: Ostrovsky
Böckenhauer, Seibert (br0090) 2000
Engebretsen, Karpinski (br0120) 2006; 72
pp. 560–569.
Berman, Karpinski (br0050) 2003; 10
pp. 550–559.
Håstad (br0140) 2001; 48
Papadimitriou, Vempala (br0220) 2006; 26
Asadpour, Goemans, Madry, Gharan, Saberi (br0020) 2010
Sebő, Vygen (br0240) 2014; 34
Arora, Lund, Motwani, Sudan, Szegedy (br0010) 1998; 45
Böckenhauer, Hromkovic, Klasing, Seibert, Unger (br0080) 2000; vol. 1770
Karpinski, Schmied (br0160) 2013
Karpinski, Schmied (br0150) 2012
Karpinski, Schmied (br0170) 2015; 49
Mucha (br0200) 2012; vol. 14
Berman (10.1016/j.jcss.2015.06.003_br0030) 1999; vol. 1644
Karpinski (10.1016/j.jcss.2015.06.003_br0150)
Berman (10.1016/j.jcss.2015.06.003_br0040) 2001; 8
10.1016/j.jcss.2015.06.003_br0130
Papadimitriou (10.1016/j.jcss.2015.06.003_br0230) 1993; 18
Bläser (10.1016/j.jcss.2015.06.003_br0070) 2004; vol. 3122
Asadpour (10.1016/j.jcss.2015.06.003_br0020) 2010
10.1016/j.jcss.2015.06.003_br0190
Berman (10.1016/j.jcss.2015.06.003_br0060) 2006
Böckenhauer (10.1016/j.jcss.2015.06.003_br0080) 2000; vol. 1770
Engebretsen (10.1016/j.jcss.2015.06.003_br0120) 2006; 72
Engebretsen (10.1016/j.jcss.2015.06.003_br0110) 2003; 35
Mucha (10.1016/j.jcss.2015.06.003_br0200) 2012; vol. 14
Sebő (10.1016/j.jcss.2015.06.003_br0240) 2014; 34
(10.1016/j.jcss.2015.06.003_br0210) 2011
Papadimitriou (10.1016/j.jcss.2015.06.003_br0220) 2006; 26
Berman (10.1016/j.jcss.2015.06.003_br0050) 2003; 10
Karpinski (10.1016/j.jcss.2015.06.003_br0170) 2015; 49
Christofides (10.1016/j.jcss.2015.06.003_br0100) 1976
Karpinski (10.1016/j.jcss.2015.06.003_br0160) 2013
Böckenhauer (10.1016/j.jcss.2015.06.003_br0090) 2000
Lampis (10.1016/j.jcss.2015.06.003_br0180) 2014; 10
Håstad (10.1016/j.jcss.2015.06.003_br0140) 2001; 48
Arora (10.1016/j.jcss.2015.06.003_br0010) 1998; 45
References_xml – volume: vol. 1770
  start-page: 382
  year: 2000
  end-page: 394
  ident: br0080
  article-title: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality
  publication-title: STACS
– start-page: 22
  year: 2011
  end-page: 25
  ident: br0210
  publication-title: IEEE 52nd Annual Symposium on Foundations of Computer Science
– reference: , pp. 550–559.
– volume: 10
  start-page: 217
  year: 2014
  end-page: 236
  ident: br0180
  article-title: Improved inapproximability for TSP
  publication-title: Theory Comput.
– volume: vol. 14
  start-page: 30
  year: 2012
  end-page: 41
  ident: br0200
  article-title: 13/9-approximation for graphic TSP
  publication-title: STACS
– volume: 34
  start-page: 597
  year: 2014
  end-page: 629
  ident: br0240
  article-title: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs
  publication-title: Combinatorica
– volume: 10
  year: 2003
  ident: br0050
  article-title: Improved approximation lower bounds on small occurrence optimization
  publication-title: Electron. Colloq. Comput. Complex. (ECCC)
– reference: Tobias Mömke, Ola Svensson, Approximating graphic TSP by matchings, in: Ostrovsky
– start-page: 379
  year: 2010
  end-page: 389
  ident: br0020
  article-title: An
  publication-title: SODA
– year: 1976
  ident: br0100
  article-title: Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem
– volume: 48
  start-page: 798
  year: 2001
  end-page: 859
  ident: br0140
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
– reference: , pp. 560–569.
– reference: Shayan Oveis Gharan, Amin Saberi, Mohit Singh, A randomized rounding approach to the traveling salesman problem, in: Ostrovsky
– volume: 18
  start-page: 1
  year: 1993
  end-page: 11
  ident: br0230
  article-title: The traveling salesman problem with distances one and two
  publication-title: Math. Oper. Res.
– volume: 35
  start-page: 301
  year: 2003
  end-page: 318
  ident: br0110
  article-title: An explicit lower bound for TSP with distances one and two
  publication-title: Algorithmica
– volume: 72
  start-page: 509
  year: 2006
  end-page: 546
  ident: br0120
  article-title: TSP with bounded metrics
  publication-title: J. Comput. Syst. Sci.
– start-page: 27
  year: 2013
  end-page: 36
  ident: br0160
  article-title: On improved inapproximability results for the shortest superstring and related problems
  publication-title: Proc. 19th CATS
– volume: 49
  start-page: 651
  year: 2015
  end-page: 668
  ident: br0170
  article-title: Approximation hardness of graphic tsp on cubic graphs
  publication-title: RAIRO Oper. Res.
– volume: 8
  year: 2001
  ident: br0040
  article-title: Efficient amplifiers and bounded degree optimization
  publication-title: Electron. Colloq. Comput. Complex. (ECCC)
– start-page: 34:213
  year: 2000
  end-page: 255, 5
  ident: br0090
  article-title: Improved lower bounds on the approximability of the traveling salesman problem
  publication-title: RAIRO Theor. Inform. Appl.
– volume: vol. 1644
  start-page: 200
  year: 1999
  end-page: 209
  ident: br0030
  article-title: On some tighter inapproximability results (extended abstract)
  publication-title: ICALP
– volume: 45
  start-page: 501
  year: 1998
  end-page: 555
  ident: br0010
  article-title: Proof verification and the hardness of approximation problems
  publication-title: J. ACM
– volume: vol. 3122
  start-page: 61
  year: 2004
  end-page: 71
  ident: br0070
  article-title: A 3/4-approximation algorithm for maximum ATSP with weights zero and one
  publication-title: APPROX-RANDOM
– start-page: 641
  year: 2006
  end-page: 648
  ident: br0060
  article-title: 8/7-approximation algorithm for
  publication-title: SODA
– year: 2012
  ident: br0150
  article-title: On approximation lower bounds for TSP with bounded metrics
– volume: 26
  start-page: 101
  year: 2006
  end-page: 120
  ident: br0220
  article-title: On the approximability of the traveling salesman problem
  publication-title: Combinatorica
– volume: 72
  start-page: 509
  issue: 4
  year: 2006
  ident: 10.1016/j.jcss.2015.06.003_br0120
  article-title: TSP with bounded metrics
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2005.12.001
– volume: 34
  start-page: 597
  issue: 5
  year: 2014
  ident: 10.1016/j.jcss.2015.06.003_br0240
  article-title: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-2960-3
– start-page: 379
  year: 2010
  ident: 10.1016/j.jcss.2015.06.003_br0020
  article-title: AnO(log⁡n/log⁡log⁡n)-approximation algorithm for the asymmetric traveling salesman problem
– volume: 8
  issue: 53
  year: 2001
  ident: 10.1016/j.jcss.2015.06.003_br0040
  article-title: Efficient amplifiers and bounded degree optimization
  publication-title: Electron. Colloq. Comput. Complex. (ECCC)
– volume: 49
  start-page: 651
  issue: 4
  year: 2015
  ident: 10.1016/j.jcss.2015.06.003_br0170
  article-title: Approximation hardness of graphic tsp on cubic graphs
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/2014062
– volume: vol. 14
  start-page: 30
  year: 2012
  ident: 10.1016/j.jcss.2015.06.003_br0200
  article-title: 13/9-approximation for graphic TSP
– volume: 26
  start-page: 101
  issue: 1
  year: 2006
  ident: 10.1016/j.jcss.2015.06.003_br0220
  article-title: On the approximability of the traveling salesman problem
  publication-title: Combinatorica
  doi: 10.1007/s00493-006-0008-z
– volume: 10
  start-page: 217
  issue: 9
  year: 2014
  ident: 10.1016/j.jcss.2015.06.003_br0180
  article-title: Improved inapproximability for TSP
  publication-title: Theory Comput.
  doi: 10.4086/toc.2014.v010a009
– start-page: 641
  year: 2006
  ident: 10.1016/j.jcss.2015.06.003_br0060
  article-title: 8/7-approximation algorithm for (1,2)-TSP
– volume: vol. 1770
  start-page: 382
  year: 2000
  ident: 10.1016/j.jcss.2015.06.003_br0080
  article-title: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality
– ident: 10.1016/j.jcss.2015.06.003_br0190
  doi: 10.1109/FOCS.2011.56
– volume: 45
  start-page: 501
  issue: 3
  year: 1998
  ident: 10.1016/j.jcss.2015.06.003_br0010
  article-title: Proof verification and the hardness of approximation problems
  publication-title: J. ACM
  doi: 10.1145/278298.278306
– volume: 18
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.jcss.2015.06.003_br0230
  article-title: The traveling salesman problem with distances one and two
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.18.1.1
– ident: 10.1016/j.jcss.2015.06.003_br0130
  doi: 10.1109/FOCS.2011.80
– start-page: 27
  year: 2013
  ident: 10.1016/j.jcss.2015.06.003_br0160
  article-title: On improved inapproximability results for the shortest superstring and related problems
– volume: 10
  issue: 008
  year: 2003
  ident: 10.1016/j.jcss.2015.06.003_br0050
  article-title: Improved approximation lower bounds on small occurrence optimization
  publication-title: Electron. Colloq. Comput. Complex. (ECCC)
– volume: 35
  start-page: 301
  issue: 4
  year: 2003
  ident: 10.1016/j.jcss.2015.06.003_br0110
  article-title: An explicit lower bound for TSP with distances one and two
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-1001-6
– ident: 10.1016/j.jcss.2015.06.003_br0150
– volume: vol. 3122
  start-page: 61
  year: 2004
  ident: 10.1016/j.jcss.2015.06.003_br0070
  article-title: A 3/4-approximation algorithm for maximum ATSP with weights zero and one
– volume: 48
  start-page: 798
  issue: 4
  year: 2001
  ident: 10.1016/j.jcss.2015.06.003_br0140
  article-title: Some optimal inapproximability results
  publication-title: J. ACM
  doi: 10.1145/502090.502098
– start-page: 34:213
  year: 2000
  ident: 10.1016/j.jcss.2015.06.003_br0090
  article-title: Improved lower bounds on the approximability of the traveling salesman problem
  publication-title: RAIRO Theor. Inform. Appl.
– year: 1976
  ident: 10.1016/j.jcss.2015.06.003_br0100
– volume: vol. 1644
  start-page: 200
  year: 1999
  ident: 10.1016/j.jcss.2015.06.003_br0030
  article-title: On some tighter inapproximability results (extended abstract)
– start-page: 22
  year: 2011
  ident: 10.1016/j.jcss.2015.06.003_br0210
SSID ssj0011563
Score 2.5124776
Snippet In this paper, we study the approximability of the metric Traveling Salesman Problem (TSP) and prove new explicit inapproximability bounds for that problem....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1665
SubjectTerms Hardness of approximation
Travelling Salesman Problem
Title New inapproximability bounds for TSP
URI https://dx.doi.org/10.1016/j.jcss.2015.06.003
Volume 81
WOSCitedRecordID wos000360777200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2724
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0011563
  issn: 0022-0000
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB6k9UEfVl2VrbtKHvatRDKZzCWPZamsgmXBCn0Lcyu22Gxpq3T_vWcuSeOuLioIJZSQSWDOx5kzc875PoTODcSoWsI2tSCFdqTaLFWSkRSDs8TaAkKI8WITfDIRs1l5Fcttt15OgNe12O_L9X81NdwDY7vW2b8wd_tSuAH_wehwBbPD9Y8M7yoWF7XnCt8vVoGG-2aonHyS514YTj9d_SYk1VHiwWcUAsfzMC6Rh5yP3BzUrj_KjW1bfRx3Y2As6Nbi-yTPl9UiHKp2-vibswZMb9VttE0wP9Vo-oYAt-6FJSX40azM0pyH9ujG0QZtlggo0fGamAW9iLgCYxaUXe5493DQsHy71FvHtI6pp17NyGEtaysMXRI696kL6sMu2CD3c05L0UP90fvx7EObaoINLGko5d2A2FkVigBvf-nX0UsnIpk-RUfRbskoQOAZemDrY_SkkelIotc-Ro87nJPP0TngI7mDjyTgIwF8JICPF-jzu_H04jKNUhmpLnCxS6URimNdwk_jPMfMcEoNcUlZbfkck1xYwaSAgJkbrqSYU8VlKQUXxmbSkJeoV1_X9gQlRlILQSq2SklXMyVUwQSjimVzwUlZDBBupqDSkUfeyZl8rZqCwWXlpq1y01b5qkkyQMN2zDqwqNz7NG1mtoogD_FdBUC4Z9yrfxx3ih4dwH6GervNN_saPdTfd4vt5k3Eyw-JDH71
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+inapproximability+bounds+for+TSP&rft.jtitle=Journal+of+computer+and+system+sciences&rft.au=Karpinski%2C+Marek&rft.au=Lampis%2C+Michael&rft.au=Schmied%2C+Richard&rft.date=2015-12-01&rft.pub=Elsevier+Inc&rft.issn=0022-0000&rft.eissn=1090-2724&rft.volume=81&rft.issue=8&rft.spage=1665&rft.epage=1677&rft_id=info:doi/10.1016%2Fj.jcss.2015.06.003&rft.externalDocID=S0022000015000641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0000&client=summon