A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions

The scale mixtures of Normal distributions are used as a robust alternative to the normal distribution in linear regression modelling, and a non-iterative Bayesian sampling algorithm is developed to obtain independently and identically distributed samples approximately from the observed posterior di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics Jg. 49; H. 4; S. 579 - 597
Hauptverfasser: Yang, Fengkai, Yuan, Haijing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2017
Springer Nature B.V
Schlagworte:
ISSN:0927-7099, 1572-9974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The scale mixtures of Normal distributions are used as a robust alternative to the normal distribution in linear regression modelling, and a non-iterative Bayesian sampling algorithm is developed to obtain independently and identically distributed samples approximately from the observed posterior distributions, which eliminates the convergence problems in iterative Gibbs sampling. Model selection and influential analysis are conducted to choose the best fitted model and to detect the latent outliers. The performances of the methodologies are illustrated through several simulation studies by comparison with the Normal regression and Gibbs sampling, and finally, the US treasury bond prices data is analyzed using the proposed algorithm.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-016-9580-5