Low-complexity CRC-aided early stopping unit for parallel turbo decoder
A low-complexity distributed cyclic redundancy check (CRC) architecture for the CRC-aided early stopping unit is proposed. In the previous distributed CRC unit, the general high-order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high-hardware cost and long criti...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 51; číslo 21; s. 1660 - 1662 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
08.10.2015
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A low-complexity distributed cyclic redundancy check (CRC) architecture for the CRC-aided early stopping unit is proposed. In the previous distributed CRC unit, the general high-order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high-hardware cost and long critical path-delay. Accordingly, a computation algorithm based on GF arithmetic is analysed and an optimal CRC unit with the small order of the GF multiplier and newly designed linear feedback shift register is proposed. The proposed CRC architecture is implemented in 65 nm CMOS process for radix-22 and radix-24 parallel turbo decoders based on LTE-Advanced. In the radix-22 system, reductions of about 57.1% of gate count, 31.7% of critical path-delay and 44.1% of power consumption are achieved compared with the previous work. |
|---|---|
| AbstractList | A low‐complexity distributed cyclic redundancy check (CRC) architecture for the CRC‐aided early stopping unit is proposed. In the previous distributed CRC unit, the general high‐order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high‐hardware cost and long critical path‐delay. Accordingly, a computation algorithm based on GF arithmetic is analysed and an optimal CRC unit with the small order of the GF multiplier and newly designed linear feedback shift register is proposed. The proposed CRC architecture is implemented in 65 nm CMOS process for radix‐22 and radix‐24 parallel turbo decoders based on LTE‐Advanced. In the radix‐22 system, reductions of about 57.1% of gate count, 31.7% of critical path‐delay and 44.1% of power consumption are achieved compared with the previous work. A low-complexity distributed cyclic redundancy check (CRC) architecture for the CRC-aided early stopping unit is proposed. In the previous distributed CRC unit, the general high-order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high-hardware cost and long critical path-delay. Accordingly, a computation algorithm based on GF arithmetic is analysed and an optimal CRC unit with the small order of the GF multiplier and newly designed linear feedback shift register is proposed. The proposed CRC architecture is implemented in 65 nm CMOS process for radix-2 super(2) and radix-2 super(4) parallel turbo decoders based on LTE-Advanced. In the radix-2 super(2) system, reductions of about 57.1% of gate count, 31.7% of critical path-delay and 44.1% of power consumption are achieved compared with the previous work. A low‐complexity distributed cyclic redundancy check (CRC) architecture for the CRC‐aided early stopping unit is proposed. In the previous distributed CRC unit, the general high‐order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high‐hardware cost and long critical path‐delay. Accordingly, a computation algorithm based on GF arithmetic is analysed and an optimal CRC unit with the small order of the GF multiplier and newly designed linear feedback shift register is proposed. The proposed CRC architecture is implemented in 65 nm CMOS process for radix‐2 2 and radix‐2 4 parallel turbo decoders based on LTE‐Advanced. In the radix‐2 2 system, reductions of about 57.1% of gate count, 31.7% of critical path‐delay and 44.1% of power consumption are achieved compared with the previous work. A low-complexity distributed cyclic redundancy check (CRC) architecture for the CRC-aided early stopping unit is proposed. In the previous distributed CRC unit, the general high-order Galois field (GF) multiplier occupies almost the area of the CRC unit and requires high-hardware cost and long critical path-delay. Accordingly, a computation algorithm based on GF arithmetic is analysed and an optimal CRC unit with the small order of the GF multiplier and newly designed linear feedback shift register is proposed. The proposed CRC architecture is implemented in 65 nm CMOS process for radix-22 and radix-24 parallel turbo decoders based on LTE-Advanced. In the radix-22 system, reductions of about 57.1% of gate count, 31.7% of critical path-delay and 44.1% of power consumption are achieved compared with the previous work. |
| Author | Kim, Ji-Hoon Kim, Hyeji Lee, Youngjoo |
| Author_xml | – sequence: 1 givenname: Hyeji surname: Kim fullname: Kim, Hyeji organization: Department of Electronic Engineering, Chungnam National University, Daejeon, Republic of Korea – sequence: 2 givenname: Youngjoo surname: Lee fullname: Lee, Youngjoo organization: Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea – sequence: 3 givenname: Ji-Hoon surname: Kim fullname: Kim, Ji-Hoon email: jihoonkim@cnu.ac.kr organization: Department of Electronic Engineering, Chungnam National University, Daejeon, Republic of Korea |
| BookMark | eNp9kEtr3DAUhUVJodM0u_4AL7rIIp7q6jXxMhkmDzAUSgvdCfn6uqhoLEeSSebfZ4YptISmq7v5zjnc7z07GeNIjH0EvgSums8UloKDXgphxBu2AKl53QD8OGELzkHWGhr1jp3l7DsOCpThChbsto2PNcbtFOjJl121_rqune-pr8ilsKtyidPkx5_VPPpSDTFVk0suBApVmVMXq54w9pQ-sLeDC5nOft9T9v1m8219V7dfbu_XV22N-0ldK83BaEPYoUQtV2hkPwCKXstBDAiyMZIjKjK6B9WhQQRBCkgarXl3KU_Z-bF3SvFhplzs1mekENxIcc4WLjlXq1XDmz0qjiimmHOiwaIvrvg4luR8sMDtQZylYA_i7EHcPnTxIjQlv3Vp9xquj_ijD7T7L2s3bSuub7jkUv95w1Oxv-Kcxr201yY-_QPdtH81T_0gnwF0NJip |
| CitedBy_id | crossref_primary_10_1016_j_aeue_2017_10_033 crossref_primary_10_1007_s10776_017_0374_z crossref_primary_10_1049_iet_com_2019_0907 |
| Cites_doi | 10.1109/TCSII.2015.2435131 10.1109/WCL.2013.052813.130259 10.1109/TC.2003.1234528 10.1109/4234.864187 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1049/el.2015.2262 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | Engineering Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1350-911X |
| EndPage | 1662 |
| ExternalDocumentID | 10_1049_el_2015_2262 ELL2BF03035 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c4145-4501656ecbc3c537c63df1c2d53f2fc139630cc4e65d14bc6cc12e41e36550b83 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364205800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Fri Sep 05 09:01:09 EDT 2025 Wed Oct 29 21:21:49 EDT 2025 Tue Nov 18 22:39:14 EST 2025 Wed Jan 22 16:59:07 EST 2025 Tue Jan 05 21:44:03 EST 2021 Thu May 09 18:35:55 EDT 2019 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Keywords | parallel turbo decoder optimal CRC unit low-complexity distributed cyclic redundancy check architecture CMOS process Galois fields linear feedback shift register turbo codes LTE-advanced low-complexity CRC-aided early stopping unit general high-order Galois field multiplier cyclic redundancy check codes shift registers CMOS integrated circuits Long Term Evolution |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4145-4501656ecbc3c537c63df1c2d53f2fc139630cc4e65d14bc6cc12e41e36550b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2015.2262 |
| PQID | 1800477909 |
| PQPubID | 23500 |
| PageCount | 3 |
| ParticipantIDs | crossref_citationtrail_10_1049_el_2015_2262 crossref_primary_10_1049_el_2015_2262 wiley_primary_10_1049_el_2015_2262_ELL2BF03035 proquest_miscellaneous_1800477909 iet_journals_10_1049_el_2015_2262 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-08 |
| PublicationDateYYYYMMDD | 2015-10-08 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2015 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Wei, Y.; Jiang, M.; Xia, B. (C3) 2013; 2 Wu, Y.; Woerner, B.D.; Ebel, W.J. (C1) 2000; 4 Kim, H.; Choi, I.; Byun, W. (C5) 2015; 62 Campobello, G.; Patané, G.; Russo, M. (C4) 2003; 52 2000; 4 2015; 62 2003; 52 2013; 2 2013 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Belfanti S. (e_1_2_8_7_1) 2013 e_1_2_8_6_1 |
| References_xml | – volume: 4 start-page: 258 issue: 8 year: 2000 end-page: 260 ident: C1 article-title: A simple stopping criterion for turbo decoding publication-title: IEEE Trans. Commun. Lett. – volume: 2 start-page: 471 issue: 5 year: 2013 end-page: 474 ident: C3 article-title: A CRC-aided hybrid decoding algorithm for turbo codes publication-title: IEEE Wirel. Commun. Lett. – volume: 62 start-page: 906 issue: 9 year: 2015 end-page: 910 ident: C5 article-title: Distributed CRC architecture for high-radix parallel turbo decoding in LTE-advanced publication-title: IEEE Trans. Circuits Syst. II – volume: 52 start-page: 1312 issue: 10 year: 2003 end-page: 1319 ident: C4 article-title: Parallel CRC realization publication-title: IEEE Trans. Comput. – volume: 2 start-page: 471 issue: 5 year: 2013 end-page: 474 article-title: A CRC‐aided hybrid decoding algorithm for turbo codes publication-title: IEEE Wirel. Commun. Lett. – start-page: C284 year: 2013 end-page: C285 – volume: 62 start-page: 906 issue: 9 year: 2015 end-page: 910 article-title: Distributed CRC architecture for high‐radix parallel turbo decoding in LTE‐advanced publication-title: IEEE Trans. Circuits Syst. II – volume: 52 start-page: 1312 issue: 10 year: 2003 end-page: 1319 article-title: Parallel CRC realization publication-title: IEEE Trans. Comput. – volume: 4 start-page: 258 issue: 8 year: 2000 end-page: 260 article-title: A simple stopping criterion for turbo decoding publication-title: IEEE Trans. Commun. Lett. – ident: e_1_2_8_6_1 doi: 10.1109/TCSII.2015.2435131 – ident: e_1_2_8_4_1 doi: 10.1109/WCL.2013.052813.130259 – ident: e_1_2_8_3_1 – ident: e_1_2_8_5_1 doi: 10.1109/TC.2003.1234528 – ident: e_1_2_8_2_1 doi: 10.1109/4234.864187 – start-page: C284 volume-title: A 1 Gbps LTE‐advanced turbo‐decoder ASIC in 65 nm CMOS year: 2013 ident: e_1_2_8_7_1 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.1635377 |
| Snippet | A low-complexity distributed cyclic redundancy check (CRC) architecture for the CRC-aided early stopping unit is proposed. In the previous distributed CRC... A low‐complexity distributed cyclic redundancy check (CRC) architecture for the CRC‐aided early stopping unit is proposed. In the previous distributed CRC... |
| SourceID | proquest crossref wiley iet |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1660 |
| SubjectTerms | Architecture CMOS CMOS integrated circuits CMOS process Counting cyclic redundancy check codes Decoders Galois fields general high‐order Galois field multiplier Information and communications linear feedback shift register Linear feedback shift registers Long Term Evolution low‐complexity CRC‐aided early stopping unit low‐complexity distributed cyclic redundancy check architecture LTE‐advanced Multipliers optimal CRC unit Optimization parallel turbo decoder Power consumption shift registers turbo codes |
| Title | Low-complexity CRC-aided early stopping unit for parallel turbo decoder |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2015.2262 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2015.2262 https://www.proquest.com/docview/1800477909 |
| Volume | 51 |
| WOSCitedRecordID | wos000364205800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4HeihtDzEtqUyUjmhQBw_Eh-rFQjEaoWqIvYW2c5EQop20bJbOPYn9DfyS5hJwnb3ABLikoMzdiyPZ_zFY3_D2A9js8JlzkbOBRvhiqcjq7yMoNBSx-BtZlydbCLt97PBwF62G250F6bhh5htuJFl1P6aDNz5JgsJglpSIgUOhD5C_IAueFUImdKsTtTlLIqArrZOroJfJaMetAffsf7xfO2FJWn5BiYLaHMes9aLzunGe7v7iX1s4Sb_2cyPz2wJhpvswxwJ4Ra76I3uH__-q8-WwwOCct791cUC4o4sOBABMif6AbpYxafoATjiXE6U4VUFFccly494AXQ3frzNrk5PfnfPojbFQhSUUDpSmq4zGQg-yKBlGowsShES1FSZlAHhoZFxCAqMLoTywYQgElACpMFfG5_JHbYyHA1hl3GZgkxj61JsRAXtXOKUR_SUGV8KWcYddvg8ynlo-ccpDUaV13FwZXOochqinIaoww5m0rcN78YLcvuosLw1vLsXZPYWZE56_9_lt0WJbTyrO0fjooiJG8Joiq1lxKaZ2th2WKPdVzuDLfeS-ki91F_eWuErW6fy5nzhN7YyGU9hj62FP5Obu_H3emLj8_q8_wQhZffP |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ4SZQDLZSK5dG6EpyqQBI_Eh_RCkRFukIVSHuzHGciIUW7aNmlPfIT-I38EmaSsN09gIR6TcaTyON52DP-hrEDbdLCpc4EznkToMdTgZG5CKBQQoWQm1S7utlE0uul_b65bPuc0l2YBh9ieuBGmlHba1JwOpBuNpySQDKBMgeROsIAAm3wskRHQy0MYnk5TSOgra27q-BnSav7beU7jj-eHT3nkxZvYDwXbs4GrbXXOfv43__7ia23ASc_aVbIBluAwSZbm4Eh_MwusuGfp4fHuroc_mJYzru_u_iA0CMLDgSBzAmAgK5W8QnaAI6RLifQ8KqCiqPTyoe8ALodP9pi12enV93zoG2yEHgZSRVIRReaNPjcC69E4rUoysjHKKsyLj0GiFqE3kvQqohk7rX3UQwyAqFxc5On4gtbGgwHsM24SEAkoXEJMpFeORc7mWP8lOq8jEQZdtiPl2m2vkUgp0YYla0z4dJYqCxNkaUp6rDDKfVtg7zxCt13lJhtVe_uFZr9OZrT7N87e1uUyONF3hbVi3ImbgDDCXJLCU8zMaHpsEa8b_4Mcs7iuqheqJ33DvjGVs-vfmU2-9m72GUfiKapNtxjS-PRBPbZir8f39yNvtar_BkDWPqi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5RQFU5tLwqQgssUntCBtv7sPdYpUQgoihCIOW2Wq_HEpKVoJAAx_6E_kZ-CTO2CckBpKpXe3a82tl5rGfnG8Z-aJPmLnUmcM6bAD2eCozMRAC5EiqEzKTaVc0mkl4vHQxMv-lzSrUwNT7E7IcbaUZlr0nB4TYv6gOnJJBMoMxBpI4xgEAbvCIVmlmCdpb9WRoBbW3VXQU_S1o9aG6-4_iT-dELPunDDUwWws35oLXyOp0v_z3fdfa5CTj5r3qHbLAlGG6ytTkYwi120R09PP35W90uh0cMy3n7so0PCD0y50AQyJwACKi0ik_RBnCMdDmBhpcllBydVjbiOVB1_HibXXdOr9pnQdNkIfAykiqQigqaNPjMC69E4rXIi8jHKKsiLjwGiFqE3kvQKo9k5rX3UQwyAqHxcJOl4itbHo6GsMO4SEAkoXEJMpFeORc7mWH8lOqsiEQRttjRyzJb3yCQUyOM0laZcGkslJaWyNIStdjPGfVtjbzxBt0hSsw2qnf3Bs3eAs1p9_WdRSkhjxd5W1Qvypm4IYymyC0lPM3EhKbFavG-Oxnk3I2rS_VC7f7rgAP2sf-7Y7vnvYtv7BOR1JcNv7PlyXgKe2zV309u7sb71SZ_Bq57-iY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90complexity+CRC%E2%80%90aided+early+stopping+unit+for+parallel+turbo+decoder&rft.jtitle=Electronics+letters&rft.au=Kim%2C+Hyeji&rft.au=Lee%2C+Youngjoo&rft.au=Kim%2C+Ji%E2%80%90Hoon&rft.date=2015-10-08&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=51&rft.issue=21&rft.spage=1660&rft.epage=1662&rft_id=info:doi/10.1049%2Fel.2015.2262&rft.externalDBID=10.1049%252Fel.2015.2262&rft.externalDocID=ELL2BF03035 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |