Monolithic integration of four-colour InGaN-based nanocolumn LEDs
The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission w...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 51; číslo 11; s. 852 - 854 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
28.05.2015
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)-colour-integrated nanocolumn LEDs. |
|---|---|
| Bibliografie: | K. Kishino: Also with the Sophia Nanotechnology Research Center, Sophia University, Tokyo, Japan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0013-5194 1350-911X 1350-911X |
| DOI: | 10.1049/el.2015.0770 |