Adaptive Graph Representation Learning for Video Person Re-Identification

Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approach...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 29; pp. 8821 - 8830
Main Authors: Wu, Yiming, Bourahla, Omar El Farouk, Li, Xi, Wu, Fei, Tian, Qi, Zhou, Xue
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approaches employ spatial and temporal attention to extract representative local features. While correlations between parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between relevant regional features. Specifically, we exploit the pose alignment connection and the feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine regional features iteratively, and the neighbor nodes' information is taken into account for part feature representation. To learn compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method. Code is available at https://github.com/weleen/AGRL.pytorch .
AbstractList Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approaches employ spatial and temporal attention to extract representative local features. While correlations between parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between relevant regional features. Specifically, we exploit the pose alignment connection and the feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine regional features iteratively, and the neighbor nodes' information is taken into account for part feature representation. To learn compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method. Code is available at https://github.com/weleen/AGRL.pytorch.
Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approaches employ spatial and temporal attention to extract representative local features. While correlations between parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between relevant regional features. Specifically, we exploit the pose alignment connection and the feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine regional features iteratively, and the neighbor nodes' information is taken into account for part feature representation. To learn compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method. Code is available at https://github.com/weleen/AGRL.pytorch.Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person Re-ID is to effectively construct discriminative and robust video feature representations for many complicated situations. Part-based approaches employ spatial and temporal attention to extract representative local features. While correlations between parts are ignored in the previous methods, to leverage the relations of different parts, we propose an innovative adaptive graph representation learning scheme for video person Re-ID, which enables the contextual interactions between relevant regional features. Specifically, we exploit the pose alignment connection and the feature affinity connection to construct an adaptive structure-aware adjacency graph, which models the intrinsic relations between graph nodes. We perform feature propagation on the adjacency graph to refine regional features iteratively, and the neighbor nodes' information is taken into account for part feature representation. To learn compact and discriminative representations, we further propose a novel temporal resolution-aware regularization, which enforces the consistency among different temporal resolutions for the same identities. We conduct extensive evaluations on four benchmarks, i.e. iLIDS-VID, PRID2011, MARS, and DukeMTMC-VideoReID, experimental results achieve the competitive performance which demonstrates the effectiveness of our proposed method. Code is available at https://github.com/weleen/AGRL.pytorch.
Author Wu, Fei
Wu, Yiming
Bourahla, Omar El Farouk
Li, Xi
Tian, Qi
Zhou, Xue
Author_xml – sequence: 1
  givenname: Yiming
  surname: Wu
  fullname: Wu, Yiming
  email: ymw@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Omar El Farouk
  surname: Bourahla
  fullname: Bourahla, Omar El Farouk
  email: obourahla@zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Xi
  orcidid: 0000-0003-3947-4011
  surname: Li
  fullname: Li, Xi
  email: xilizju@zju.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Fei
  surname: Wu
  fullname: Wu, Fei
  email: wufei@cs.zju.edu.cn
  organization: College of Computer Science, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Qi
  surname: Tian
  fullname: Tian, Qi
  email: qitian@cs.utsa.edu
  organization: Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX, USA
– sequence: 6
  givenname: Xue
  surname: Zhou
  fullname: Zhou, Xue
  email: zhouxue@uestc.edu.cn
  organization: School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32746239$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9LwzAUx4NMnE7vgiAFL14685I0bY4i_hgMHKJeQ5q-asbW1qQT_O_N3PSwg6c8eJ_Pl_C-R2TQtA0Scgp0DEDV1fNkNmaU0TGnFKTie-QQlICUUsEGcaZZnuYg1JAchTCPjMhAHpAhZ7mQjKtDMrmuTNe7T0zuvenekyfsPAZsetO7tkmmaHzjmrekbn3y6ipskxn6EDdPmE6qyLna2R_2mOzXZhHwZPuOyMvd7fPNQzp9vJ_cXE9TK4D3aW1lmVU145myeSlLRQUUVhSl5HlRySKHEpgBFGUlshoEB57ZurAlymgyxUfkcpPb-fZjhaHXSxcsLhamwXYVNBOc8jwrKIvoxQ46b1e-ib-LlBASQBTrwPMttSqXWOnOu6XxX_r3SBGQG8D6NgSPtbZuc5_eG7fQQPW6DR3b0Os29LaNKNId8Tf7H-VsozhE_MMVgCri-htsEZKS
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s40747_024_01474_4
crossref_primary_10_1109_TMM_2022_3140647
crossref_primary_10_1109_TITS_2024_3386914
crossref_primary_10_1109_TIP_2021_3131937
crossref_primary_10_1109_TCSVT_2022_3189027
crossref_primary_10_1109_TCSVT_2024_3483265
crossref_primary_10_3724_SP_J_1089_2022_18852
crossref_primary_10_1007_s11042_023_16286_w
crossref_primary_10_1109_TITS_2024_3490582
crossref_primary_10_1145_3487044
crossref_primary_10_1109_TPAMI_2022_3161600
crossref_primary_10_1007_s00138_022_01349_z
crossref_primary_10_1016_j_neunet_2025_107946
crossref_primary_10_1109_TIP_2021_3077138
crossref_primary_10_1109_TIP_2024_3372832
crossref_primary_10_1109_TNNLS_2023_3341246
crossref_primary_10_1007_s11042_022_13669_3
crossref_primary_10_1016_j_patcog_2023_109669
crossref_primary_10_3390_e23121686
crossref_primary_10_1109_TIP_2025_3531299
crossref_primary_10_1007_s11042_021_10588_7
crossref_primary_10_1016_j_imavis_2023_104629
crossref_primary_10_1049_cvi2_12100
crossref_primary_10_1109_TIP_2021_3120054
crossref_primary_10_3390_sym15040906
crossref_primary_10_1109_TCSVT_2022_3183011
crossref_primary_10_3390_sym17050672
crossref_primary_10_1016_j_patcog_2024_110981
crossref_primary_10_1016_j_imavis_2025_105518
crossref_primary_10_1016_j_cja_2022_11_017
crossref_primary_10_1016_j_eswa_2024_125429
crossref_primary_10_1049_ipr2_12380
crossref_primary_10_26599_AIR_2025_9150048
crossref_primary_10_38124_ijisrt_25jul706
crossref_primary_10_1007_s13198_024_02517_2
crossref_primary_10_1016_j_engappai_2022_105108
crossref_primary_10_1016_j_patcog_2025_111813
crossref_primary_10_1016_j_imavis_2023_104791
crossref_primary_10_1109_TIP_2021_3112039
crossref_primary_10_1007_s11042_022_12585_w
crossref_primary_10_1016_j_image_2024_117240
crossref_primary_10_1109_TCSVT_2023_3276996
crossref_primary_10_1109_TCSVT_2023_3250464
crossref_primary_10_1109_TIP_2021_3079821
crossref_primary_10_1016_j_neucom_2024_128479
crossref_primary_10_1109_TMM_2024_3362136
crossref_primary_10_1109_TCSVT_2025_3531883
crossref_primary_10_1109_TIFS_2025_3539079
crossref_primary_10_1016_j_patcog_2022_108708
crossref_primary_10_1109_TIP_2021_3093759
crossref_primary_10_3390_math12223508
crossref_primary_10_3390_s23198138
crossref_primary_10_1109_ACCESS_2021_3062967
crossref_primary_10_1007_s13042_022_01560_4
crossref_primary_10_1016_j_neucom_2023_03_003
crossref_primary_10_1007_s11042_023_15116_3
crossref_primary_10_3390_app13031289
crossref_primary_10_1109_TIP_2023_3247159
crossref_primary_10_32604_cmc_2024_054895
crossref_primary_10_3390_electronics14153118
crossref_primary_10_3390_s24072229
crossref_primary_10_1109_TIP_2022_3163855
crossref_primary_10_1016_j_imavis_2024_104917
crossref_primary_10_1016_j_patcog_2022_108593
crossref_primary_10_1109_LSP_2021_3132286
crossref_primary_10_3390_s23073384
crossref_primary_10_1007_s40747_023_01229_7
crossref_primary_10_1007_s00521_023_08477_1
crossref_primary_10_1109_TIP_2023_3236144
crossref_primary_10_1007_s00138_023_01489_w
crossref_primary_10_1007_s11263_025_02350_5
crossref_primary_10_1016_j_eswa_2025_128123
crossref_primary_10_1049_ell2_12382
crossref_primary_10_1109_TNNLS_2023_3297607
crossref_primary_10_1016_j_neucom_2022_03_032
crossref_primary_10_1109_TCSVT_2021_3119983
crossref_primary_10_1109_TIFS_2021_3075894
crossref_primary_10_1007_s11042_023_15473_z
crossref_primary_10_1109_ACCESS_2020_3042644
crossref_primary_10_1109_JIOT_2023_3250652
crossref_primary_10_1016_j_neucom_2021_04_080
crossref_primary_10_1109_TMM_2023_3276167
crossref_primary_10_1016_j_imavis_2022_104394
crossref_primary_10_1109_TCSVT_2023_3340428
crossref_primary_10_1109_TIP_2022_3175593
crossref_primary_10_1109_TIP_2023_3296901
crossref_primary_10_1007_s10489_021_02992_1
crossref_primary_10_1016_j_imavis_2022_104432
crossref_primary_10_1016_j_knosys_2025_113461
crossref_primary_10_1007_s00371_023_03208_y
crossref_primary_10_3390_app13179528
Cites_doi 10.1109/CVPR.2018.00128
10.1109/CVPR.2018.00543
10.1109/CVPR.2016.148
10.1609/aaai.v33i01.33018618
10.1007/978-3-030-01270-0_12
10.1109/TIP.2018.2878505
10.1109/CVPR.2019.00871
10.1109/ROBOT.2005.1570420
10.1109/ICCV.2017.74
10.1109/TNN.2008.2005605
10.1609/aaai.v33i01.33018786
10.1109/ICCV.2019.00380
10.1109/CVPR.2019.00505
10.1109/CVPR.2017.360
10.1109/CVPR.2017.499
10.1109/TIP.2019.2911488
10.1109/CVPR.2018.00051
10.1109/ICCV.2017.427
10.1007/978-3-319-10593-2_45
10.1109/TMM.2018.2877886
10.1007/978-3-642-21227-7_9
10.1109/CVPR.2017.717
10.1007/978-3-030-01216-8_43
10.1609/aaai.v33i01.33018295
10.1109/TNNLS.2019.2891244
10.1109/CVPR.2018.00709
10.1109/ICCV.2017.550
10.1109/CVPR.2018.00046
10.1109/ICCV.2017.127
10.1109/ICCV.2017.507
10.1109/CVPR.2017.11
10.1109/CVPR.2018.00562
10.1109/TCSVT.2017.2715499
10.1109/CVPR.2016.90
10.1016/j.patcog.2018.05.007
10.1109/ICCV.2017.265
10.1109/ICCV.2017.349
10.1007/978-3-030-01267-0_30
10.1109/CVPRW.2019.00190
10.1609/aaai.v33i01.33018287
10.1109/CVPR.2019.00954
10.1007/978-3-319-48881-3_2
10.1007/978-3-319-46466-4_42
10.1109/JAS.2018.7511081
10.1007/978-3-319-46466-4_52
10.1109/WACV.2019.00130
10.1007/978-3-030-01240-3_40
10.1109/CVPR.2019.00226
10.1186/1687-6180-2014-15
10.1109/CVPR.2018.00902
10.1007/978-3-030-01225-0_30
10.1109/TIP.2019.2908062
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2020.3001693
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore (NTUSG)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 8830
ExternalDocumentID 32746239
10_1109_TIP_2020_3001693
9119869
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Key Scientific Technological Innovation Research Project by the Ministry of Education
– fundername: National Natural Science Foundation of China
  grantid: 61751209; 6162510; 61972071
  funderid: 10.13039/501100001809
– fundername: Zhejiang Laboratory
  grantid: 2019KD0AB02
– fundername: Zhejiang University K. P. Chao’s High Technology Development Foundation
  funderid: 10.13039/501100004835
– fundername: Baidu AI Frontier Technology Joint Research Program
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LR19F020004
  funderid: 10.13039/501100004731
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-fc6b5df2359c7b6b90418c48b6378d6871b12a1e4bd45f143135cf8cbe6c6b293
IEDL.DBID RIE
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000571723000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 07:38:25 EDT 2025
Mon Jun 30 10:13:16 EDT 2025
Wed Feb 19 02:04:26 EST 2025
Tue Nov 18 22:17:42 EST 2025
Sat Nov 29 03:21:12 EST 2025
Wed Aug 27 02:32:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-fc6b5df2359c7b6b90418c48b6378d6871b12a1e4bd45f143135cf8cbe6c6b293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3947-4011
PMID 32746239
PQID 2444611489
PQPubID 85429
PageCount 10
ParticipantIDs proquest_miscellaneous_2430375802
crossref_citationtrail_10_1109_TIP_2020_3001693
proquest_journals_2444611489
crossref_primary_10_1109_TIP_2020_3001693
ieee_primary_9119869
pubmed_primary_32746239
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ying (ref39) 2018
ref18
hamilton (ref36) 2017
kipf (ref37) 2017
ref51
veli?kovi? (ref38) 2018
ref46
ref45
ref48
ref47
ref42
ref44
yan (ref41) 2018
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
kingma (ref61) 2015
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
liu (ref16) 2019
song (ref19) 2018
zhang (ref40) 2018
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
wu (ref50) 2019
ref28
hermans (ref54) 2017
ref27
ref29
ref60
ref62
References_xml – ident: ref7
  doi: 10.1109/CVPR.2018.00128
– ident: ref60
  doi: 10.1109/CVPR.2018.00543
– ident: ref2
  doi: 10.1109/CVPR.2016.148
– ident: ref14
  doi: 10.1609/aaai.v33i01.33018618
– ident: ref27
  doi: 10.1007/978-3-030-01270-0_12
– ident: ref9
  doi: 10.1109/TIP.2018.2878505
– ident: ref25
  doi: 10.1109/CVPR.2019.00871
– ident: ref1
  doi: 10.1109/ROBOT.2005.1570420
– ident: ref63
  doi: 10.1109/ICCV.2017.74
– ident: ref35
  doi: 10.1109/TNN.2008.2005605
– ident: ref13
  doi: 10.1609/aaai.v33i01.33018786
– ident: ref26
  doi: 10.1109/ICCV.2019.00380
– ident: ref34
  doi: 10.1109/CVPR.2019.00505
– start-page: 7347
  year: 2018
  ident: ref19
  article-title: Region-based quality estimation network for large-scale person re-identification
  publication-title: Proc AAAI
– ident: ref29
  doi: 10.1109/CVPR.2017.360
– ident: ref5
  doi: 10.1109/CVPR.2017.499
– ident: ref11
  doi: 10.1109/TIP.2019.2911488
– ident: ref30
  doi: 10.1109/CVPR.2018.00051
– start-page: 4438
  year: 2018
  ident: ref40
  article-title: An end-to-end deep learning architecture for graph classification
  publication-title: Proc AAAI
– ident: ref32
  doi: 10.1109/ICCV.2017.427
– ident: ref56
  doi: 10.1007/978-3-319-10593-2_45
– start-page: 7444
  year: 2018
  ident: ref41
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  publication-title: Proc AAAI
– ident: ref20
  doi: 10.1109/TMM.2018.2877886
– ident: ref57
  doi: 10.1007/978-3-642-21227-7_9
– start-page: 1
  year: 2019
  ident: ref16
  article-title: Spatially and temporally efficient non-local attention network for video-based person re-identification
  publication-title: Proc BMVC
– ident: ref3
  doi: 10.1109/CVPR.2017.717
– year: 2017
  ident: ref54
  article-title: In defense of the triplet loss for person re-identification
  publication-title: arXiv 1703 07737
– ident: ref51
  doi: 10.1007/978-3-030-01216-8_43
– ident: ref24
  doi: 10.1609/aaai.v33i01.33018295
– ident: ref10
  doi: 10.1109/TNNLS.2019.2891244
– ident: ref21
  doi: 10.1109/CVPR.2018.00709
– ident: ref47
  doi: 10.1109/ICCV.2017.550
– ident: ref6
  doi: 10.1109/CVPR.2018.00046
– ident: ref43
  doi: 10.1109/ICCV.2017.127
– ident: ref4
  doi: 10.1109/ICCV.2017.507
– ident: ref53
  doi: 10.1109/CVPR.2017.11
– ident: ref8
  doi: 10.1109/CVPR.2018.00562
– ident: ref62
  doi: 10.1109/TCSVT.2017.2715499
– ident: ref52
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2017
  ident: ref37
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref42
  doi: 10.1016/j.patcog.2018.05.007
– ident: ref28
  doi: 10.1109/ICCV.2017.265
– ident: ref22
  doi: 10.1109/ICCV.2017.349
– ident: ref44
  doi: 10.1007/978-3-030-01267-0_30
– start-page: 4800
  year: 2018
  ident: ref39
  article-title: Hierarchical graph representation learning with differentiable pooling
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref55
  doi: 10.1109/CVPRW.2019.00190
– ident: ref15
  doi: 10.1609/aaai.v33i01.33018287
– ident: ref18
  doi: 10.1109/CVPR.2019.00954
– start-page: 1
  year: 2015
  ident: ref61
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref59
  doi: 10.1007/978-3-319-48881-3_2
– ident: ref33
  doi: 10.1007/978-3-319-46466-4_42
– ident: ref48
  doi: 10.1109/JAS.2018.7511081
– start-page: 1024
  year: 2017
  ident: ref36
  article-title: Inductive representation learning on large graphs
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref58
  doi: 10.1007/978-3-319-46466-4_52
– start-page: 274
  year: 2019
  ident: ref50
  article-title: Spatial-temporal graph attention network for video-based gait recognition
  publication-title: Proc Asian Conf Pattern Recognit
– ident: ref17
  doi: 10.1109/WACV.2019.00130
– ident: ref31
  doi: 10.1007/978-3-030-01240-3_40
– ident: ref46
  doi: 10.1109/CVPR.2019.00226
– start-page: 1
  year: 2018
  ident: ref38
  article-title: Graph attention networks
  publication-title: Proc Int Conf Learn Represent
– ident: ref49
  doi: 10.1186/1687-6180-2014-15
– ident: ref45
  doi: 10.1109/CVPR.2018.00902
– ident: ref23
  doi: 10.1007/978-3-030-01225-0_30
– ident: ref12
  doi: 10.1109/TIP.2019.2908062
SSID ssj0014516
Score 2.6457255
Snippet Recent years have witnessed the remarkable progress of applying deep learning models in video person re-identification (Re-ID). A key factor for video person...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8821
SubjectTerms Adaptation models
Adaptive structures
consistency
Context modeling
Deep learning
Feature extraction
graph neural network
Graph representations
Graphical representations
Machine learning
Nodes
Regularization
Temporal resolution
Three-dimensional displays
Video person re-identification
Visualization
Title Adaptive Graph Representation Learning for Video Person Re-Identification
URI https://ieeexplore.ieee.org/document/9119869
https://www.ncbi.nlm.nih.gov/pubmed/32746239
https://www.proquest.com/docview/2444611489
https://www.proquest.com/docview/2430375802
Volume 29
WOSCitedRecordID wos000571723000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (NTUSG)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5UPOjBWV-746pE8CLYTj_SeRxlcXYFkUFU5tZ0XiJIjzgz_n4r6UyzggreGlLpDlWprq9SqSqAY1eojJVGJ6VCdxUBvEhqo_OE5ZZKapWjLpTMv-LX12I8lqMlOO1yYay14fKZPfOPIZZvJnruj8oGqJhSMLkMy5yzNlerixj4hrMhslnyhCPsX4QkUzm4vRyhI5ijf5qG2iPvTFDoqfI5vAxmZtj73gJ_wEaEk-S8lf8mLNlmC3oRWpKouNMtWP-v7uA2XJ6b-tn_58hfX6-a3ITrsDELqSGx5uoDQUBL7h-NnZBRAOZImLSZvS4e9e3A3fDi9s-_JPZUSDSaq1niNFOlcXlRSs0VUzKlmdBUKFZwYRi6TyrL68xSZWjpEExlRamd0MoynInYYBdWmkljfwHJEMoV3JcMcxTtfKlUza0wyPxaUcNNHwYLNlc6Fhz3fS-equB4pLJCwVReMFUUTB9OuhnPbbGNL2i3Pf87usj6PuwvJFlFbZxWCGEo844fDh91w6hHPjhSN3Yy9zSFbwcs0rwPP9sd0L27QNcdYaLc-_ibv2HNr6w9mNmHldnL3B7Aqn6dPU5fDnGzjsVh2KxvqBDjtw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SbaHJIc8m2SRNVeilUGf9kGTpGErTLN0sS9mW3Iz1KoHgDfvI789I1poW2kBvBkm2mNFY32g03wB8cIXKODM6YQrdVQTwIqmNzhOeWyqpVY66QJk_KsdjcXsrJxvwqcuFsdaGy2f2wj-GWL6Z6ZU_KhugYUrB5Qt4ySjN0zZbq4sZ-JKzIbbJyqRE4L8OSqZyMB1O0BXM0UNNA_vIH5tQqKryb4AZNpqrnf-b4i5sR0BJLtsVsAcbttmHnQguSTTdxT5s_cY8eADDS1M_-D8d-eoZq8n3cCE25iE1JLKu_iIIacnPO2NnZBKgOXZM2txeFw_73sCPqy_Tz9dJrKqQaNywlonTXDHj8oJJXSquZEozoalQvCiF4ehAqSyvM0uVocwhnMoKpp3QynIciejgEHrNrLHHQDIEc0XpScMc6oMzperSCoPCrxU1penDYC3mSkfKcV_54r4KrkcqK1RM5RVTRcX04WM34qGl23im74GXf9cvir4PZ2tNVtEeFxWCGMq964fN77tmtCQfHqkbO1v5PoUvCCzSvA9H7Qro3l2g845AUZ78_Zvv4PX19GZUjYbjb6ew6WfZHtOcQW85X9m38Eo_Lu8W8_OwZJ8ASUPmFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Graph+Representation+Learning+for+Video+Person+Re-identification&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Yiming&rft.au=Bourahla%2C+Omar+El+Farouk&rft.au=Li%2C+Xi&rft.au=Wu%2C+Fei&rft.date=2020-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2020.3001693&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon